These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20634572)

  • 21. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires.
    Dong A; Tang R; Buhro WE
    J Am Chem Soc; 2007 Oct; 129(40):12254-62. PubMed ID: 17880075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires.
    Tao AR; Yang P
    J Phys Chem B; 2005 Aug; 109(33):15687-90. PubMed ID: 16852990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic field distribution of a highly focused radially-polarized light beam.
    Zhang Y; Ding B
    Opt Express; 2009 Nov; 17(24):22235-9. PubMed ID: 19997470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-dependent effects in surface-enhanced Raman scattering (SERS).
    Etchegoin PG; Galloway C; Le Ru EC
    Phys Chem Chem Phys; 2006 Jun; 8(22):2624-8. PubMed ID: 16738716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controllable p-n switching behaviors of GaAs nanowires via an interface effect.
    Han N; Wang F; Hou JJ; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 May; 6(5):4428-33. PubMed ID: 22519669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Doubling absorption in nanowire solar cells with dielectric shell optical antennas.
    Kim SK; Zhang X; Hill DJ; Song KD; Park JS; Park HG; Cahoon JF
    Nano Lett; 2015 Jan; 15(1):753-8. PubMed ID: 25546325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size dependence of structural, electronic, elastic, and optical properties of selenium nanowires: a first-principles study.
    Kahaly MU; Ghosh P; Narasimhan S; Waghmare UV
    J Chem Phys; 2008 Jan; 128(4):044718. PubMed ID: 18247992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatially localized wavelength-selective absorption in morphology-modulated semiconductor nanowires.
    Choi JS; Kim KH; No YS
    Opt Express; 2017 Sep; 25(19):22750-22759. PubMed ID: 29041581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature.
    Deng SZ; Fan HM; Wang M; Zheng MR; Yi JB; Wu RQ; Tan HR; Sow CH; Ding J; Feng YP; Loh KP
    ACS Nano; 2010 Jan; 4(1):495-505. PubMed ID: 20028113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the light-scattering form factor on the Bragg diffraction patterns of arrays of metallic nanoparticles.
    Gonçalves MR; Siegel A; Marti O
    J Microsc; 2008 Mar; 229(Pt 3):475-82. PubMed ID: 18331498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties.
    Xi G; He Y; Wang C
    Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pattern-selective epitaxial growth of twin-free Pd nanowires from supported nanocrystal seeds.
    Yoo Y; Yoon I; Lee H; Ahn J; Ahn JP; Kim B
    ACS Nano; 2010 May; 4(5):2919-27. PubMed ID: 20455529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural discontinuity induced surface second harmonic generation in single, thin zinc-blende GaAs nanowires.
    Wei YM; Yu Y; Wang J; Liu L; Ni HQ; Niu ZC; Li JT; Wang XH; Yu SY
    Nanoscale; 2017 Oct; 9(41):16066-16072. PubMed ID: 29034398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires.
    Schmidt TM; Miwa RH
    Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas.
    Casadei A; Pecora EF; Trevino J; Forestiere C; Rüffer D; Russo-Averchi E; Matteini F; Tutuncuoglu G; Heiss M; Fontcuberta i Morral A; Dal Negro L
    Nano Lett; 2014 May; 14(5):2271-8. PubMed ID: 24742076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires.
    Liu WF; Oh JI; Shen WZ
    Nanotechnology; 2011 Mar; 22(12):125705. PubMed ID: 21317497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.