These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 20634770)
1. The relationship between electrically evoked compound action potential and speech perception: a study in cochlear implant users with short electrode array. Kim JR; Abbas PJ; Brown CJ; Etler CP; O'Brien S; Kim LS Otol Neurotol; 2010 Sep; 31(7):1041-8. PubMed ID: 20634770 [TBL] [Abstract][Full Text] [Related]
2. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Schvartz-Leyzac KC; Pfingst BE Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841 [TBL] [Abstract][Full Text] [Related]
3. Psychophysical versus physiological spatial forward masking and the relation to speech perception in cochlear implants. Hughes ML; Stille LJ Ear Hear; 2008 Jun; 29(3):435-52. PubMed ID: 18344869 [TBL] [Abstract][Full Text] [Related]
4. Comparison of electrically evoked compound action potential thresholds and loudness estimates for the stimuli used to program the Advanced Bionics cochlear implant. Jeon EK; Brown CJ; Etler CP; O'Brien S; Chiou LK; Abbas PJ J Am Acad Audiol; 2010 Jan; 21(1):16-27. PubMed ID: 20085196 [TBL] [Abstract][Full Text] [Related]
5. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Schvartz-Leyzac KC; Zwolan TA; Pfingst BE Hear Res; 2021 Jul; 406():108257. PubMed ID: 34020316 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients. Schvartz-Leyzac KC; Pfingst BE Ear Hear; 2018; 39(2):344-358. PubMed ID: 28885234 [TBL] [Abstract][Full Text] [Related]
7. Effects of long-term use of a cochlear implant on the electrically evoked compound action potential. Brown CJ; Abbas PJ; Etlert CP; O'Brient S; Oleson JJ J Am Acad Audiol; 2010 Jan; 21(1):5-15. PubMed ID: 20085195 [TBL] [Abstract][Full Text] [Related]
8. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials. Dong Y; Briaire JJ; Stronks HC; Frijns JHM Ear Hear; 2023 Mar-Apr 01; 44(2):276-286. PubMed ID: 36253905 [TBL] [Abstract][Full Text] [Related]
9. The Effect of Interphase Gap on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves. He S; Xu L; Skidmore J; Chao X; Jeng FC; Wang R; Luo J; Wang H Ear Hear; 2020; 41(4):918-934. PubMed ID: 31688319 [TBL] [Abstract][Full Text] [Related]
10. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs. Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Swiderski DL; Raphael Y; Pfingst BE Hear Res; 2019 Nov; 383():107809. PubMed ID: 31630082 [TBL] [Abstract][Full Text] [Related]
11. Adaptation of the electrically evoked compound action potential (ECAP) recorded from nucleus CI24 cochlear implant users. Clay KM; Brown CJ Ear Hear; 2007 Dec; 28(6):850-61. PubMed ID: 17982371 [TBL] [Abstract][Full Text] [Related]
12. Peripheral Neural Synchrony in Postlingually Deafened Adult Cochlear Implant Users. He S; Skidmore J; Bruce IC; Oleson JJ; Yuan Y Ear Hear; 2024 Sep-Oct 01; 45(5):1125-1137. PubMed ID: 38503720 [TBL] [Abstract][Full Text] [Related]
13. Assessing the relationship between neural health measures and speech performance with simultaneous electric stimulation in cochlear implant listeners. Langner F; Arenberg JG; Büchner A; Nogueira W PLoS One; 2021; 16(12):e0261295. PubMed ID: 34898654 [TBL] [Abstract][Full Text] [Related]
14. Relationships between electrically evoked potentials and loudness growth in bilateral cochlear implant users. Kirby B; Brown C; Abbas P; Etler C; O'Brien S Ear Hear; 2012; 33(3):389-98. PubMed ID: 22246138 [TBL] [Abstract][Full Text] [Related]
15. Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Smoorenburg GF; Willeboer C; van Dijk JE Audiol Neurootol; 2002; 7(6):335-47. PubMed ID: 12401965 [TBL] [Abstract][Full Text] [Related]
17. Cochlear Implantation with the CI512 and CI532 Precurved Electrode Arrays: One-Year Speech Recognition and Intraoperative Thresholds of Electrically Evoked Compound Action Potentials. Videhult Pierre P; Eklöf M; Smeds H; Asp F Audiol Neurootol; 2019; 24(6):299-308. PubMed ID: 31846976 [TBL] [Abstract][Full Text] [Related]
18. Systematic review of compound action potentials as predictors for cochlear implant performance. van Eijl RH; Buitenhuis PJ; Stegeman I; Klis SF; Grolman W Laryngoscope; 2017 Feb; 127(2):476-487. PubMed ID: 27804133 [TBL] [Abstract][Full Text] [Related]
19. The Effect of Advanced Age on the Electrode-Neuron Interface in Cochlear Implant Users. Skidmore J; Carter BL; Riggs WJ; He S Ear Hear; 2022 Jul-Aug 01; 43(4):1300-1315. PubMed ID: 34935648 [TBL] [Abstract][Full Text] [Related]
20. Intraoperative Electrically Evoked Compound Action Potential Growth and Maximum Amplitudes in Hearing Preservation Cochlear Implant Recipients. Mussoi BS; Woodson E; Sydlowski S Otol Neurotol; 2023 Apr; 44(4):e216-e222. PubMed ID: 36946363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]