These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20634879)

  • 1. Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin beta1.
    Klockenbusch C; Kast J
    J Biomed Biotechnol; 2010; 2010():927585. PubMed ID: 20634879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins.
    Tayri-Wilk T; Slavin M; Zamel J; Blass A; Cohen S; Motzik A; Sun X; Shalev DE; Ram O; Kalisman N
    Nat Commun; 2020 Jun; 11(1):3128. PubMed ID: 32561732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions.
    Sutherland BW; Toews J; Kast J
    J Mass Spectrom; 2008 Jun; 43(6):699-715. PubMed ID: 18438963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics.
    Tran BQ; Goodlett DR; Goo YA
    Biochim Biophys Acta; 2016 Jan; 1864(1):123-9. PubMed ID: 26025770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of protein-protein interactions using in vivo cross-linking and mass spectrometry.
    Vasilescu J; Guo X; Kast J
    Proteomics; 2004 Dec; 4(12):3845-54. PubMed ID: 15540166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex.
    Nguyen-Huynh NT; Sharov G; Potel C; Fichter P; Trowitzsch S; Berger I; Lamour V; Schultz P; Potier N; Leize-Wagner E
    Protein Sci; 2015 Aug; 24(8):1232-46. PubMed ID: 25753033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network.
    Guerrero C; Tagwerker C; Kaiser P; Huang L
    Mol Cell Proteomics; 2006 Feb; 5(2):366-78. PubMed ID: 16284124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions.
    Toews J; Rogalski JC; Clark TJ; Kast J
    Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribo-Proteomics Approach to Profile RNA-Protein and Protein-Protein Interaction Networks.
    Yeh HS; Chang JW; Yong J
    Methods Mol Biol; 2016; 1421():165-74. PubMed ID: 26965265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometric analysis of cross-linking sites for the structure of proteins and protein complexes.
    Jin Lee Y
    Mol Biosyst; 2008 Aug; 4(8):816-23. PubMed ID: 18633483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formaldehyde cross-linking and structural proteomics: Bridging the gap.
    Srinivasa S; Ding X; Kast J
    Methods; 2015 Nov; 89():91-8. PubMed ID: 25979347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex.
    Kalkhof S; Ihling C; Mechtler K; Sinz A
    Anal Chem; 2005 Jan; 77(2):495-503. PubMed ID: 15649045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing formaldehyde cross-linking towards quantitative proteomic applications.
    Klockenbusch C; O'Hara JE; Kast J
    Anal Bioanal Chem; 2012 Sep; 404(4):1057-67. PubMed ID: 22610548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new cross-linking strategy: protein interaction reporter (PIR) technology for protein-protein interaction studies.
    Tang X; Bruce JE
    Mol Biosyst; 2010 Jun; 6(6):939-47. PubMed ID: 20485738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes.
    Rappsilber J
    J Struct Biol; 2011 Mar; 173(3):530-40. PubMed ID: 21029779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted cross-linking-mass spectrometry determines vicinal interactomes within heterogeneous RNP complexes.
    Trahan C; Oeffinger M
    Nucleic Acids Res; 2016 Feb; 44(3):1354-69. PubMed ID: 26657640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-SPINE: a biochemical tool to identify protein-protein interactions of membrane proteins in vivo.
    Müller VS; Tschauner K; Hunke S
    J Vis Exp; 2013 Nov; (81):e50810. PubMed ID: 24300168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping protein receptor-ligand interactions via in vivo chemical crosslinking, affinity purification, and differential mass spectrometry.
    Kim KM; Yi EC; Kim Y
    Methods; 2012 Feb; 56(2):161-5. PubMed ID: 22062956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does chemical cross-linking with NHS esters reflect the chemical equilibrium of protein-protein noncovalent interactions in solution?
    Mädler S; Seitz M; Robinson J; Zenobi R
    J Am Soc Mass Spectrom; 2010 Oct; 21(10):1775-83. PubMed ID: 20708949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical cross-linking for protein-protein interaction studies.
    Tang X; Bruce JE
    Methods Mol Biol; 2009; 492():283-93. PubMed ID: 19241040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.