These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 20634890)

  • 1. Visualizing the distribution of synapses from individual neurons in the mouse brain.
    Li L; Tasic B; Micheva KD; Ivanov VM; Spletter ML; Smith SJ; Luo L
    PLoS One; 2010 Jul; 5(7):e11503. PubMed ID: 20634890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific labeling of climbing fibers shows early synaptic interactions with immature Purkinje cells in the prenatal cerebellum.
    Kita Y; Tanaka K; Murakami F
    Dev Neurobiol; 2015 Sep; 75(9):927-34. PubMed ID: 25529108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balanced GABAergic and glutamatergic synapse development in hippocampal neurons.
    Zhao X; Shoji S; Lau P
    Biochem Biophys Res Commun; 2005 May; 330(4):1110-5. PubMed ID: 15823558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner.
    Neuhoff H; Sassoè-Pognetto M; Panzanelli P; Maas C; Witke W; Kneussel M
    Eur J Neurosci; 2005 Jan; 21(1):15-25. PubMed ID: 15654839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D electron microscopic reconstruction of segments of rat cerebellar Purkinje cell dendrites receiving ascending and parallel fiber granule cell synaptic inputs.
    Lu H; Esquivel AV; Bower JM
    J Comp Neurol; 2009 Jun; 514(6):583-94. PubMed ID: 19363797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity.
    Straub I; Witter L; Eshra A; Hoidis M; Byczkowicz N; Maas S; Delvendahl I; Dorgans K; Savier E; Bechmann I; Krueger M; Isope P; Hallermann S
    Elife; 2020 Feb; 9():. PubMed ID: 32022688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with presynaptic and postsynaptic tagged-molecular markers.
    Kuriu T; Yanagawa Y; Konishi S
    Mol Cell Neurosci; 2012 Feb; 49(2):184-95. PubMed ID: 22146684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cbln1 accumulates and colocalizes with Cbln3 and GluRdelta2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum.
    Miura E; Matsuda K; Morgan JI; Yuzaki M; Watanabe M
    Eur J Neurosci; 2009 Feb; 29(4):693-706. PubMed ID: 19250438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmentally regulated changes in cellular compartmentation and synaptic distribution of actin in hippocampal neurons.
    Zhang W; Benson DL
    J Neurosci Res; 2002 Aug; 69(4):427-36. PubMed ID: 12210837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum.
    Kono M; Kakegawa W; Yoshida K; Yuzaki M
    J Physiol; 2019 Feb; 597(3):903-920. PubMed ID: 30382582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [THE SYNAPTOGENESIS IN THE DEVELOPING CEREBELLUM OF THE RAT].
    Zimatkin SM; Karniushko OA
    Morfologiia; 2016; 150(4):34-9. PubMed ID: 30136825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of GABARAP relative to LC3 in the axonal initial segments of neurons.
    Koike M; Tanida I; Nanao T; Tada N; Iwata J; Ueno T; Kominami E; Uchiyama Y
    PLoS One; 2013; 8(5):e63568. PubMed ID: 23671684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced synaptic integration of adult-born neurons in the olfactory bulb of lactating mothers.
    Kopel H; Schechtman E; Groysman M; Mizrahi A
    J Neurosci; 2012 May; 32(22):7519-27. PubMed ID: 22649230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the alpha1 subunit in Purkinje cells.
    Fritschy JM; Panzanelli P; Kralic JE; Vogt KE; Sassoè-Pognetto M
    J Neurosci; 2006 Mar; 26(12):3245-55. PubMed ID: 16554475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.
    Tang Y; An L; Yuan Y; Pei Q; Wang Q; Liu JK
    PLoS Comput Biol; 2021 Feb; 17(2):e1008670. PubMed ID: 33566820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascending granule cell axon: an important component of cerebellar cortical circuitry.
    Gundappa-Sulur G; De Schutter E; Bower JM
    J Comp Neurol; 1999 Jun; 408(4):580-96. PubMed ID: 10340507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the role of calcium-induced calcium release in short-term presynaptic plasticity at excitatory central synapses.
    Carter AG; Vogt KE; Foster KA; Regehr WG
    J Neurosci; 2002 Jan; 22(1):21-8. PubMed ID: 11756484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunocytochemical localization of neuronal calcium sensor-1 in the hippocampus and cerebellum of the mouse, with special reference to presynaptic terminals.
    Jinno S; Jeromin A; Roder J; Kosaka T
    Neuroscience; 2002; 113(2):449-61. PubMed ID: 12127101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of unitary granule cell-->Purkinje cell synapses in adult rat cerebellar slices.
    Isope P; Barbour B
    J Neurosci; 2002 Nov; 22(22):9668-78. PubMed ID: 12427822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse.
    Sakurai K; Toyoshima M; Ueda H; Matsubara K; Takeda Y; Karagogeos D; Shimoda Y; Watanabe K
    Dev Neurobiol; 2009 Oct; 69(12):811-24. PubMed ID: 19672956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.