These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 20635204)
1. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel. Lee MG; Choi S; Park JK Biomed Microdevices; 2010 Dec; 12(6):1019-26. PubMed ID: 20635204 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lee MG; Choi S; Park JK Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733 [TBL] [Abstract][Full Text] [Related]
4. Inertial separation in a contraction-expansion array microchannel. Lee MG; Choi S; Park JK J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909 [TBL] [Abstract][Full Text] [Related]
5. Reciprocating flow-based centrifugal microfluidics mixer. Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976 [TBL] [Abstract][Full Text] [Related]
6. AC electroosmotic micromixer for chemical processing in a microchannel. Sasaki N; Kitamori T; Kim HB Lab Chip; 2006 Apr; 6(4):550-4. PubMed ID: 16572218 [TBL] [Abstract][Full Text] [Related]
7. Multivortex micromixing. Sudarsan AP; Ugaz VM Proc Natl Acad Sci U S A; 2006 May; 103(19):7228-33. PubMed ID: 16645036 [TBL] [Abstract][Full Text] [Related]
8. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications. Kim YW; Yoo JY Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591 [TBL] [Abstract][Full Text] [Related]
10. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Park JS; Jung HI Anal Chem; 2009 Oct; 81(20):8280-8. PubMed ID: 19775116 [TBL] [Abstract][Full Text] [Related]
11. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells. Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128 [TBL] [Abstract][Full Text] [Related]
12. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Choi YS; Seo KW; Lee SJ Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415 [TBL] [Abstract][Full Text] [Related]
13. Fluid mixing in droplet-based microfluidics with T junction and convergent-divergent sinusoidal microchannels. Yang L; Li S; Liu J; Cheng J Electrophoresis; 2018 Feb; 39(3):512-520. PubMed ID: 29168894 [TBL] [Abstract][Full Text] [Related]
14. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961 [TBL] [Abstract][Full Text] [Related]
15. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752 [TBL] [Abstract][Full Text] [Related]
16. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Sim TS; Kwon K; Park JC; Lee JG; Jung HI Lab Chip; 2011 Jan; 11(1):93-9. PubMed ID: 20957273 [TBL] [Abstract][Full Text] [Related]