These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 20635852)
1. Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model. Mills JD; Bailes JE; Sedney CL; Hutchins H; Sears B J Neurosurg; 2011 Jan; 114(1):77-84. PubMed ID: 20635852 [TBL] [Abstract][Full Text] [Related]
2. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. Bailes JE; Mills JD J Neurotrauma; 2010 Sep; 27(9):1617-24. PubMed ID: 20597639 [TBL] [Abstract][Full Text] [Related]
3. Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid Beta peptide in traumatic axonal injury. Stone JR; Okonkwo DO; Singleton RH; Mutlu LK; Helm GA; Povlishock JT J Neurotrauma; 2002 May; 19(5):601-14. PubMed ID: 12042095 [TBL] [Abstract][Full Text] [Related]
4. Effect of randomized supplementation with high dose olive, flax or fish oil on serum phospholipid fatty acid levels in adults with attention deficit hyperactivity disorder. Young GS; Conquer JA; Thomas R Reprod Nutr Dev; 2005; 45(5):549-58. PubMed ID: 16188207 [TBL] [Abstract][Full Text] [Related]
5. Internal jugular vein compression mitigates traumatic axonal injury in a rat model by reducing the intracranial slosh effect. Smith DW; Bailes JE; Fisher JA; Robles J; Turner RC; Mills JD Neurosurgery; 2012 Mar; 70(3):740-6. PubMed ID: 21904255 [TBL] [Abstract][Full Text] [Related]
7. Postinjury administration of pituitary adenylate cyclase activating polypeptide (PACAP) attenuates traumatically induced axonal injury in rats. Tamás A; Zsombok A; Farkas O; Reglödi D; Pál J; Büki A; Lengvári I; Povlishock JT; Dóczi T J Neurotrauma; 2006 May; 23(5):686-95. PubMed ID: 16689670 [TBL] [Abstract][Full Text] [Related]
8. Posttraumatic hypothermia in the treatment of axonal damage in an animal model of traumatic axonal injury. Koizumi H; Povlishock JT J Neurosurg; 1998 Aug; 89(2):303-9. PubMed ID: 9688127 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis of the relationship between intra- axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. Marmarou CR; Walker SA; Davis CL; Povlishock JT J Neurotrauma; 2005 Oct; 22(10):1066-80. PubMed ID: 16238484 [TBL] [Abstract][Full Text] [Related]
10. Omega-3 fatty acid supplement prevents development of intracranial atherosclerosis. Shen J; Hafeez A; Stevenson J; Yang J; Yin C; Li F; Wang S; Du H; Ji X; Rafols JA; Geng X; Ding Y Neuroscience; 2016 Oct; 334():226-235. PubMed ID: 27522963 [TBL] [Abstract][Full Text] [Related]
11. The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: a multi-site, non-randomized study. Heileson JL; Anzalone AJ; Carbuhn AF; Askow AT; Stone JD; Turner SM; Hillyer LM; Ma DWL; Luedke JA; Jagim AR; Oliver JM J Int Soc Sports Nutr; 2021 Sep; 18(1):65. PubMed ID: 34579748 [TBL] [Abstract][Full Text] [Related]
12. Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats. Bramlett HM; Kraydieh S; Green EJ; Dietrich WD J Neuropathol Exp Neurol; 1997 Oct; 56(10):1132-41. PubMed ID: 9329457 [TBL] [Abstract][Full Text] [Related]
13. Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. Hellewell SC; Yan EB; Agyapomaa DA; Bye N; Morganti-Kossmann MC J Neurotrauma; 2010 Nov; 27(11):1997-2010. PubMed ID: 20822466 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of tissue deposition of omega-3 fatty acids from polar-lipid rich oil of the microalgae Nannochloropsis oculata with krill oil in rats. Kagan ML; Levy A; Leikin-Frenkel A Food Funct; 2015 Jan; 6(1):186-92. PubMed ID: 25360534 [TBL] [Abstract][Full Text] [Related]
15. Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury. Stone JR; Okonkwo DO; Dialo AO; Rubin DG; Mutlu LK; Povlishock JT; Helm GA Exp Neurol; 2004 Nov; 190(1):59-69. PubMed ID: 15473980 [TBL] [Abstract][Full Text] [Related]
16. Nutritional restriction of omega-3 fatty acids alters topographical fine tuning and leads to a delay in the critical period in the rodent visual system. de Velasco PC; Mendonça HR; Borba JM; Andrade da Costa BL; Guedes RC; Navarro DM; Santos GK; Faria-Melibeu Ada C; Campello Costa P; Serfaty CA Exp Neurol; 2012 Mar; 234(1):220-9. PubMed ID: 22227060 [TBL] [Abstract][Full Text] [Related]
17. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Huang WL; King VR; Curran OE; Dyall SC; Ward RE; Lal N; Priestley JV; Michael-Titus AT Brain; 2007 Nov; 130(Pt 11):3004-19. PubMed ID: 17901087 [TBL] [Abstract][Full Text] [Related]
18. Administration of the immunophilin ligand FK506 differentially attenuates neurofilament compaction and impaired axonal transport in injured axons following diffuse traumatic brain injury. Marmarou CR; Povlishock JT Exp Neurol; 2006 Feb; 197(2):353-62. PubMed ID: 16297913 [TBL] [Abstract][Full Text] [Related]
19. Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Huh JW; Franklin MA; Widing AG; Raghupathi R Dev Neurosci; 2006; 28(4-5):466-76. PubMed ID: 16943669 [TBL] [Abstract][Full Text] [Related]
20. Dietary supplementation of omega-3 fatty acid and circulating levels of interleukin-1beta, osteocalcin, and C-reactive protein in rats. Vardar-Sengül S; Buduneli N; Buduneli E; Kardeşler L; Baylas H; Atilla G; Lappin D; Kinane DF J Periodontol; 2006 May; 77(5):814-20. PubMed ID: 16671873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]