These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 20636032)
1. Integrated microreactors for reaction automation: new approaches to reaction development. McMullen JP; Jensen KF Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():19-42. PubMed ID: 20636032 [TBL] [Abstract][Full Text] [Related]
2. Miniaturized continuous flow reaction vessels: influence on chemical reactions. Brivio M; Verboom W; Reinhoudt DN Lab Chip; 2006 Mar; 6(3):329-44. PubMed ID: 16511615 [TBL] [Abstract][Full Text] [Related]
3. An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. McMullen JP; Stone MT; Buchwald SL; Jensen KF Angew Chem Int Ed Engl; 2010 Sep; 49(39):7076-80. PubMed ID: 20726027 [No Abstract] [Full Text] [Related]
4. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors. Gruber P; Marques MPC; O'Sullivan B; Baganz F; Wohlgemuth R; Szita N Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28481000 [TBL] [Abstract][Full Text] [Related]
6. Efficient photosensitized oxygenations in phase contact enhanced microreactors. Park CP; Maurya RA; Lee JH; Kim DP Lab Chip; 2011 Jun; 11(11):1941-5. PubMed ID: 21499614 [TBL] [Abstract][Full Text] [Related]
7. Green and sustainable chemical synthesis using flow microreactors. Yoshida J; Kim H; Nagaki A ChemSusChem; 2011 Mar; 4(3):331-40. PubMed ID: 21394921 [TBL] [Abstract][Full Text] [Related]
8. Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow. Yue J; Falke FH; Schouten JC; Nijhuis TA Lab Chip; 2013 Dec; 13(24):4855-63. PubMed ID: 24178763 [TBL] [Abstract][Full Text] [Related]
9. Microreactors for continuous processing – How close to commercial utility? Fortunak J; Confalone PN; Grosso JA Curr Opin Drug Discov Devel; 2010; 13(6):642-4. PubMed ID: 21105486 [TBL] [Abstract][Full Text] [Related]
10. Optofluidic platforms based on surface-enhanced Raman scattering. Lim C; Hong J; Chung BG; deMello AJ; Choo J Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230 [TBL] [Abstract][Full Text] [Related]
11. Potential of levitated drops to serve as microreactors for biophysical measurements. Scheeline A; Behrens RL Biophys Chem; 2012 May; 165-166():1-12. PubMed ID: 22498502 [TBL] [Abstract][Full Text] [Related]
13. Advantages of synthesizing trans-1,2-cyclohexanediol in a continuous flow microreactor over a standard glass apparatus. Hartung A; Keane MA; Kraft A J Org Chem; 2007 Dec; 72(26):10235-8. PubMed ID: 18001100 [TBL] [Abstract][Full Text] [Related]
15. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices. Fredrick SJ; Gross EM Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185 [TBL] [Abstract][Full Text] [Related]
16. Fully integrated microfluidic separations systems for biochemical analysis. Roman GT; Kennedy RT J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293 [TBL] [Abstract][Full Text] [Related]
17. Principles of development and design of microsystems. Wagner B Endosc Surg Allied Technol; 1995 Aug; 3(4):204-9. PubMed ID: 8846038 [TBL] [Abstract][Full Text] [Related]
18. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230 [TBL] [Abstract][Full Text] [Related]