These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20636038)

  • 1. In situ optical studies of solid-oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():151-74. PubMed ID: 20636038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing and mapping electrode surfaces in solid oxide fuel cells.
    Blinn KS; Li X; Liu M; Bottomley LA; Liu M
    J Vis Exp; 2012 Sep; (67):e50161. PubMed ID: 23023264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Chemistry in Solid Oxide Fuel Cells: In Situ Optical Studies.
    Pomfret MB; Walker RA; Owrutsky JC
    J Phys Chem Lett; 2012 Oct; 3(20):3053-64. PubMed ID: 26292249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.
    Brett DJ; Kucernak AR; Aguiar P; Atkins SC; Brandon NP; Clague R; Cohen LF; Hinds G; Kalyvas C; Offer GJ; Ladewig B; Maher R; Marquis A; Shearing P; Vasileiadis N; Vesovic V
    Chemphyschem; 2010 Sep; 11(13):2714-31. PubMed ID: 20730848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis in solid oxide fuel cells.
    Gorte RJ; Vohs JM
    Annu Rev Chem Biomol Eng; 2011; 2():9-30. PubMed ID: 22432608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ X-ray spectromicroscopy investigation of the material stability of SOFC metal interconnects in operating electrochemical cells.
    Bozzini B; Tondo E; Prasciolu M; Amati M; Abyaneh MK; Gregoratti L; Kiskinova M
    ChemSusChem; 2011 Aug; 4(8):1099-103. PubMed ID: 21695791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.
    Montanini R; Quattrocchi A; Piccolo SA; Amato A; Trocino S; Zignani SC; Faro ML; Squadrito G
    Appl Opt; 2016 Sep; 55(25):7142-8. PubMed ID: 27607294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced anodes for high-temperature fuel cells.
    Atkinson A; Barnett S; Gorte RJ; Irvine JT; McEvoy AJ; Mogensen M; Singhal SC; Vohs J
    Nat Mater; 2004 Jan; 3(1):17-27. PubMed ID: 14704781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.
    Pomfret MB; Owrutsky JC; Walker RA
    J Phys Chem B; 2006 Sep; 110(35):17305-8. PubMed ID: 16942063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.
    Kim J; Sengodan S; Kwon G; Ding D; Shin J; Liu M; Kim G
    ChemSusChem; 2014 Oct; 7(10):2811-5. PubMed ID: 25146887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials challenges toward proton-conducting oxide fuel cells: a critical review.
    Fabbri E; Pergolesi D; Traversa E
    Chem Soc Rev; 2010 Nov; 39(11):4355-69. PubMed ID: 20818453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct in situ probe of electrochemical processes in operating fuel cells.
    Nonnenmann SS; Kungas R; Vohs J; Bonnell DA
    ACS Nano; 2013 Jul; 7(7):6330-6. PubMed ID: 23782103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ studies of fuel oxidation in solid oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Anal Chem; 2007 Mar; 79(6):2367-72. PubMed ID: 17295449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft X-ray imaging and spectromicroscopy: new insights in chemical state and morphology of the key components in operating fuel-cells.
    Bozzini B; Abyaneh MK; Amati M; Gianoncelli A; Gregoratti L; Kaulich B; Kiskinova M
    Chemistry; 2012 Aug; 18(33):10196-210. PubMed ID: 22836392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives on the metallic interconnects for solid oxide fuel cells.
    Zhu WZ; Yan M
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1471-503. PubMed ID: 15547954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O(3±δ).
    Huber AK; Falk M; Rohnke M; Luerssen B; Gregoratti L; Amati M; Janek J
    Phys Chem Chem Phys; 2012 Jan; 14(2):751-8. PubMed ID: 22116198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.