These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20636862)

  • 41. Modest but increased penetration through damaged skin: an overview of the in vivo human model.
    Gattu S; Maibach HI
    Skin Pharmacol Physiol; 2011; 24(1):2-9. PubMed ID: 20588085
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimating skin permeability from physicochemical characteristics of drugs: a comparison between conventional models and an in vivo-based approach.
    Farahmand S; Maibach HI
    Int J Pharm; 2009 Jun; 375(1-2):41-7. PubMed ID: 19481689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of surface charges from DFT calculations to predict intestinal absorption.
    Jones R; Connolly PC; Klamt A; Diedenhofen M
    J Chem Inf Model; 2005; 45(5):1337-42. PubMed ID: 16180910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption.
    Clark DE
    J Pharm Sci; 1999 Aug; 88(8):807-14. PubMed ID: 10430547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Percutaneous absorption.
    Brisson P
    Can Med Assoc J; 1974 May; 110(10):1182-5. PubMed ID: 4597976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical penetration enhancers: a patent review.
    Ahad A; Aqil M; Kohli K; Chaudhary H; Sultana Y; Mujeeb M; Talegaonkar S
    Expert Opin Ther Pat; 2009 Jul; 19(7):969-88. PubMed ID: 19552513
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of in vitro models for the prediction of compound absorption across the human intestinal mucosa.
    Miret S; Abrahamse L; de Groene EM
    J Biomol Screen; 2004 Oct; 9(7):598-606. PubMed ID: 15475479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Absorption characteristics of compounds with different molecular weights after application to the unilateral kidney surface in rats.
    Nishida K; Tomiyama N; Mukai T; Nakashima M; Sasaki H; Nakamura J
    Eur J Pharm Biopharm; 2004 Nov; 58(3):705-11. PubMed ID: 15451548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ex vivo permeability experiments in excised rat intestinal tissue and in vitro solubility measurements in aspirated human intestinal fluids support age-dependent oral drug absorption.
    Annaert P; Brouwers J; Bijnens A; Lammert F; Tack J; Augustijns P
    Eur J Pharm Sci; 2010 Jan; 39(1-3):15-22. PubMed ID: 19837159
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of formulations and experimental conditions on in vitro human skin permeation-Data from updated EDETOX database.
    Samaras EG; Riviere JE; Ghafourian T
    Int J Pharm; 2012 Sep; 434(1-2):280-91. PubMed ID: 22634139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Caco-2 cells as a model for intestinal absorption.
    Angelis ID; Turco L
    Curr Protoc Toxicol; 2011 Feb; Chapter 20():Unit20.6. PubMed ID: 21400683
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamics and control of percutaneous drug absorption in the presence of epidermal turnover.
    Simon L; Goyal A
    J Pharm Sci; 2009 Jan; 98(1):187-204. PubMed ID: 18481307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipid solubility and molecular weight: whose idea was that.
    Kasting GB
    Skin Pharmacol Physiol; 2013; 26(4-6):295-301. PubMed ID: 23921116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Linear free energy relationship analysis of permeability across polydimethylsiloxane (PDMS) membranes and comparison with human skin permeation in vitro.
    Liu X; Zhang K; Abraham MH
    Eur J Pharm Sci; 2018 Oct; 123():524-530. PubMed ID: 30107227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysing the skin barrier from down under.
    Grice J; Benson HA
    Skin Pharmacol Physiol; 2013; 26(4-6):254-62. PubMed ID: 23921112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mathematical models for dermal drug absorption.
    Selzer D; Neumann D; Schaefer UF
    Expert Opin Drug Metab Toxicol; 2015; 11(10):1567-83. PubMed ID: 26166490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent developments in skin mimic systems to predict transdermal permeation.
    Waters LJ
    Curr Pharm Des; 2015; 21(20):2725-32. PubMed ID: 25925123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New propanoyloxy derivatives of 5β-cholan-24-oic acid as drug absorption modifiers.
    Coufalová L; Mrózek L; Rárová L; Plaček L; Opatřilová R; Dohnal J; Král'ová K; Paleta O; Král V; Drašar P; Jampílek J
    Steroids; 2013 May; 78(5):435-53. PubMed ID: 23435200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-related percutaneous penetration part 1: skin factors.
    Konda S; Meier-Davis SR; Cayme B; Shudo J; Maibach HI
    Skin Therapy Lett; 2012 May; 17(5):1-5. PubMed ID: 22622279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrasound-enhanced transdermal transport.
    Merino G; Kalia YN; Guy RH
    J Pharm Sci; 2003 Jun; 92(6):1125-37. PubMed ID: 12761802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.