BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20636870)

  • 1. Investigation of solute permeation across hydrogels composed of poly(methyl vinyl ether-co-maleic acid) and poly(ethylene glycol).
    Raj Singh TR; Woolfson AD; Donnelly RF
    J Pharm Pharmacol; 2010 Jul; 62(7):829-37. PubMed ID: 20636870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically enhanced solute permeation across poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: effect of hydrogel crosslink density and ionic conductivity.
    Garland MJ; Singh TR; Woolfson AD; Donnelly RF
    Int J Pharm; 2011 Mar; 406(1-2):91-8. PubMed ID: 21236323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks.
    Engberg K; Frank CW
    Biomed Mater; 2011 Oct; 6(5):055006. PubMed ID: 21873762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(methyl vinyl ether-alt-maleic acid) polymers for cell encapsulation.
    Gardner CM; Burke NA; Chu T; Shen F; Potter MA; Stöver HD
    J Biomater Sci Polym Ed; 2011; 22(16):2127-45. PubMed ID: 21067656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling behavior and mechanical properties of poly(acrylamide-co-itaconic acid) hydrogels and their semi-IPNS with poly(ethylene glycol).
    Stanojević M; Stupar M; Kalagasidis Krusić M; Filipović J
    J Control Release; 2005 Jan; 101(1-3):307-9. PubMed ID: 15719500
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone.
    Wang K; Xu X; Wang Y; Yan X; Guo G; Huang M; Luo F; Zhao X; Wei Y; Qian Z
    Int J Pharm; 2010 Apr; 389(1-2):130-8. PubMed ID: 20096758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plum-pudding gels as a platform for drug delivery: understanding the effects of the different components on the diffusion behavior of solutes.
    Salvati A; Söderman O; Lynch I
    J Phys Chem B; 2007 Jun; 111(25):7367-76. PubMed ID: 17547442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solute transport analysis in pH-responsive, complexing hydrogels of poly(methacrylic acid-g-ethylene glycol).
    Lowman AM; Peppas NA
    J Biomater Sci Polym Ed; 1999; 10(9):999-1009. PubMed ID: 10574613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of biocompatible polymeric hydrogels with tunable adhesion to both hydrophobic and hydrophilic surfaces.
    Guo X; Deng F; Li L; Prud'homme RK
    Biomacromolecules; 2008 Jun; 9(6):1637-42. PubMed ID: 18498192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane.
    Ma X; Zhou N; Zhang T; Hu W; Gu N
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():357-365. PubMed ID: 28183619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogels based on poly(methyl vinyl ether-co-maleic acid) and Tween 85 for sustained delivery of hydrophobic drugs.
    Larrañeta E; Barturen L; Ervine M; Donnelly RF
    Int J Pharm; 2018 Mar; 538(1-2):147-158. PubMed ID: 29353081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives.
    Bartil T; Bounekhel M; Cedric C; Jeerome R
    Acta Pharm; 2007 Sep; 57(3):301-14. PubMed ID: 17878110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation.
    Wu DQ; Wang T; Lu B; Xu XD; Cheng SX; Jiang XJ; Zhang XZ; Zhuo RX
    Langmuir; 2008 Sep; 24(18):10306-12. PubMed ID: 18680318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels.
    Hiemstra C; Zhong Z; Van Tomme SR; van Steenbergen MJ; Jacobs JJ; Otter WD; Hennink WE; Feijen J
    J Control Release; 2007 Jun; 119(3):320-7. PubMed ID: 17475360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations.
    Jang SS; Goddard WA; Kalani MY
    J Phys Chem B; 2007 Feb; 111(7):1729-37. PubMed ID: 17249716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels.
    Bencherif SA; Sheehan JA; Hollinger JO; Walker LM; Matyjaszewski K; Washburn NR
    J Biomed Mater Res A; 2009 Jul; 90(1):142-53. PubMed ID: 18491397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydrophilicity and agmatine modification on degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels.
    Tanahashi K; Mikos AG
    J Biomed Mater Res A; 2003 Dec; 67(4):1148-54. PubMed ID: 14624500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.