BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 20636997)

  • 1. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of foot posture, support stiffness, heel pad loading and tissue mechanical properties on biomechanical factors associated with a risk of heel ulceration.
    Sopher R; Nixon J; McGinnis E; Gefen A
    J Mech Behav Biomed Mater; 2011 May; 4(4):572-82. PubMed ID: 21396606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation.
    Spears IR; Miller-Young JE; Sharma J; Ker RF; Smith FW
    J Biomech; 2007; 40(12):2774-80. PubMed ID: 17362970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image-based midsole insert design and the material effects on heel plantar pressure distribution during simulated walking loads.
    Gu YD; Li JS; Lake MJ; Zeng YJ; Ren XJ; Li ZY
    Comput Methods Biomech Biomed Engin; 2011 Aug; 14(8):747-53. PubMed ID: 21390937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling.
    Mo F; Li J; Yang Z; Zhou S; Behr M
    Ann Biomed Eng; 2019 Dec; 47(12):2356-2371. PubMed ID: 31264043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study.
    Cheung JT; Zhang M; Leung AK; Fan YB
    J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    J Mech Behav Biomed Mater; 2017 Jan; 65():753-760. PubMed ID: 27764748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.
    Chen WM; Lee SJ; Lee PVS
    J Mech Behav Biomed Mater; 2014 Dec; 40():264-274. PubMed ID: 25255421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foot strike and the properties of the human heel pad.
    Ker RF; Bennett MB; Alexander RM; Kester RC
    Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subject-specific material properties of the heel pad: An inverse finite element analysis.
    Isvilanonda V; Li EY; Williams ED; Cavanagh PR; Haynor DR; Chu B; Ledoux WR
    J Biomech; 2024 Mar; 165():112016. PubMed ID: 38422775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the optimum heel pad stiffness: a modeling study.
    Lin CY; Chuang HJ; Cortes DH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study.
    De Clercq D; Aerts P; Kunnen M
    J Biomech; 1994 Oct; 27(10):1213-22. PubMed ID: 7962009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling.
    Natali AN; Fontanella CG; Carniel EL; Young M
    Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex.
    Cheung JT; Zhang M; An KN
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):839-46. PubMed ID: 15342156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.