These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 20636997)
1. Heel skin stiffness effect on the hind foot biomechanics during heel strike. Gu Y; Li J; Ren X; Lake MJ; Zeng Y Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997 [TBL] [Abstract][Full Text] [Related]
2. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma. Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391 [TBL] [Abstract][Full Text] [Related]
3. The influence of foot posture, support stiffness, heel pad loading and tissue mechanical properties on biomechanical factors associated with a risk of heel ulceration. Sopher R; Nixon J; McGinnis E; Gefen A J Mech Behav Biomed Mater; 2011 May; 4(4):572-82. PubMed ID: 21396606 [TBL] [Abstract][Full Text] [Related]
4. The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation. Spears IR; Miller-Young JE; Sharma J; Ker RF; Smith FW J Biomech; 2007; 40(12):2774-80. PubMed ID: 17362970 [TBL] [Abstract][Full Text] [Related]
5. Image-based midsole insert design and the material effects on heel plantar pressure distribution during simulated walking loads. Gu YD; Li JS; Lake MJ; Zeng YJ; Ren XJ; Li ZY Comput Methods Biomech Biomed Engin; 2011 Aug; 14(8):747-53. PubMed ID: 21390937 [TBL] [Abstract][Full Text] [Related]
6. In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling. Mo F; Li J; Yang Z; Zhou S; Behr M Ann Biomed Eng; 2019 Dec; 47(12):2356-2371. PubMed ID: 31264043 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study. Cheung JT; Zhang M; Leung AK; Fan YB J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586 [TBL] [Abstract][Full Text] [Related]
8. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation. Suzuki R; Ito K; Lee T; Ogihara N J Mech Behav Biomed Mater; 2017 Jan; 65():753-760. PubMed ID: 27764748 [TBL] [Abstract][Full Text] [Related]
9. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load. Naemi R; Chatzistergos PE; Chockalingam N Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551 [TBL] [Abstract][Full Text] [Related]
10. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling. Chen WM; Lee SJ; Lee PVS J Mech Behav Biomed Mater; 2014 Dec; 40():264-274. PubMed ID: 25255421 [TBL] [Abstract][Full Text] [Related]
11. Foot strike and the properties of the human heel pad. Ker RF; Bennett MB; Alexander RM; Kester RC Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955 [TBL] [Abstract][Full Text] [Related]
12. Force-deformation properties of the human heel pad during barefoot walking. Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425 [TBL] [Abstract][Full Text] [Related]
13. Subject-specific material properties of the heel pad: An inverse finite element analysis. Isvilanonda V; Li EY; Williams ED; Cavanagh PR; Haynor DR; Chu B; Ledoux WR J Biomech; 2024 Mar; 165():112016. PubMed ID: 38422775 [TBL] [Abstract][Full Text] [Related]
14. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis. Ahanchian N; Nester CJ; Howard D; Ren L; Parker D Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178 [TBL] [Abstract][Full Text] [Related]
15. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads. Chen WM; Lee PV Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the optimum heel pad stiffness: a modeling study. Lin CY; Chuang HJ; Cortes DH Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146 [TBL] [Abstract][Full Text] [Related]
17. The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study. De Clercq D; Aerts P; Kunnen M J Biomech; 1994 Oct; 27(10):1213-22. PubMed ID: 7962009 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling. Natali AN; Fontanella CG; Carniel EL; Young M Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775 [TBL] [Abstract][Full Text] [Related]
19. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot. Mithraratne K; Ho H; Hunter PJ; Fernandez JW Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636 [TBL] [Abstract][Full Text] [Related]
20. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Cheung JT; Zhang M; An KN Clin Biomech (Bristol); 2004 Oct; 19(8):839-46. PubMed ID: 15342156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]