These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 20636997)

  • 41. A fluoroscopic imaging-guided computational analyses to inform internal tissue loads within fat pad of the diabetic foot during gait.
    Zhang X; Teng Z; Geng X; Ma X; Chen WM
    J Biomech; 2023 Aug; 157():111744. PubMed ID: 37535986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Material properties of the human calcaneal fat pad in compression: experiment and theory.
    Miller-Young JE; Duncan NA; Baroud G
    J Biomech; 2002 Dec; 35(12):1523-31. PubMed ID: 12445605
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite element analysis of plantar fascia during walking: a quasi-static simulation.
    Chen YN; Chang CW; Li CT; Chang CH; Lin CF
    Foot Ankle Int; 2015 Jan; 36(1):90-7. PubMed ID: 25189539
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Minimum indentation depth for characterization of 2nd sub-metatarsal head and heel pad tissue properties.
    Chin Teoh J; Bena Lim Y; Lee T
    J Biomech; 2015 Jul; 48(10):2096-101. PubMed ID: 25890816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanics of the foot Part 1: a continuum framework for evaluating soft tissue stiffening in the pathologic foot.
    Fernandez JW; Ul Haque MZ; Hunter PJ; Mithraratne K
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1056-70. PubMed ID: 23027635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.
    Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N
    J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of the calcaneus shape on the risk of posterior heel ulcer using 3D patient-specific biomechanical modeling.
    Luboz V; Perrier A; Bucki M; Diot B; Cannard F; Vuillerme N; Payan Y
    Ann Biomed Eng; 2015 Feb; 43(2):325-35. PubMed ID: 25384835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ontogenetic changes in foot strike pattern and calcaneal loading during walking in young children.
    Zeininger A; Schmitt D; Jensen JL; Shapiro LJ
    Gait Posture; 2018 Jan; 59():18-22. PubMed ID: 28982055
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An inverse finite-element model of heel-pad indentation.
    Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR
    J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanics of tarsal disintegration and plantar ulcers in leprosy by stress analysis in three dimensional foot models.
    Patil KM; Jacob S
    Indian J Lepr; 2000; 72(1):69-86. PubMed ID: 10935188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constitutive formulation and numerical analysis of the heel pad region.
    Natali AN; Fontanella CG; Carniel EL
    Comput Methods Biomech Biomed Engin; 2012; 15(4):401-9. PubMed ID: 21246425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.
    Wang Y; Li Z; Wong DW; Zhang M
    PLoS One; 2015; 10(7):e0134340. PubMed ID: 26222188
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a finite element model of female foot for high-heeled shoe design.
    Yu J; Cheung JT; Fan Y; Zhang Y; Leung AK; Zhang M
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S31-8. PubMed ID: 17964015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions.
    Akrami M; Qian Z; Zou Z; Howard D; Nester CJ; Ren L
    Biomech Model Mechanobiol; 2018 Apr; 17(2):559-576. PubMed ID: 29139051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Patellar tendon bearing brace: combined effect of heel clearance and ankle status on foot plantar pressure.
    Alimerzaloo F; Kashani RV; Saeedi H; Farzi M; Fallahian N
    Prosthet Orthot Int; 2014 Feb; 38(1):34-8. PubMed ID: 23690286
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications.
    Gefen A; Megido-Ravid M; Itzchak Y; Arcan M
    J Biomech Eng; 2000 Dec; 122(6):630-9. PubMed ID: 11192385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.