BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20637070)

  • 1. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation.
    Faize M; Faize L; Burgos L
    BMC Biotechnol; 2010 Jul; 10():53. PubMed ID: 20637070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequent occurrence of transgene deletion in transgenic plants.
    Kim YS; Lee MH; Min SR; Yoo OJ; Liu JR
    Mol Cells; 1998 Dec; 8(6):705-8. PubMed ID: 9895123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes.
    López-Noguera S; Petri C; Burgos L
    Plant Cell Rep; 2009 Dec; 28(12):1781-90. PubMed ID: 19820947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics.
    Pons E; Peris JE; Peña L
    BMC Biotechnol; 2012 Jul; 12():41. PubMed ID: 22794278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time PCR for the detection of precise transgene copy number in durum wheat.
    Gadaleta A; Giancaspro A; Cardone MF; Blanco A
    Cell Mol Biol Lett; 2011 Dec; 16(4):652-68. PubMed ID: 21922222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants.
    Petri C; Wang H; Alburquerque N; Faize M; Burgos L
    Plant Cell Rep; 2008 Aug; 27(8):1317-24. PubMed ID: 18449544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triprimer-PCR method: rapid and reliable detection of transgenes in transgenic rice plants.
    Lee DK; Seok SJ; Jang IC; Nahm BH; Kim JK
    Mol Cells; 1998 Feb; 8(1):101-6. PubMed ID: 9571639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR.
    Yang L; Ding J; Zhang C; Jia J; Weng H; Liu W; Zhang D
    Plant Cell Rep; 2005 Mar; 23(10-11):759-63. PubMed ID: 15459795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene.
    Ramana Rao MV; Parameswari C; Sripriya R; Veluthambi K
    Plant Cell Rep; 2011 Jul; 30(7):1241-52. PubMed ID: 21327387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small RNAs were involved in homozygous state-associated silencing of a marker gene (Neomycin phosphotransferase II: nptII) in transgenic tomato plants.
    Deng L; Pan Y; Chen X; Chen G; Hu Z
    Plant Physiol Biochem; 2013 Jul; 68():8-15. PubMed ID: 23612328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Expression of Mortierella isabellina delta6-fatty acid desaturase gene in gamma-linolenic acid production in transgenic tobacco].
    Li MC; Liu L; Hu GW; Xing LJ
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):178-84. PubMed ID: 15966318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay.
    Mieog JC; Howitt CA; Ral JP
    BMC Plant Biol; 2013 Apr; 13():71. PubMed ID: 23627847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants.
    Moravcíková J; Vaculková E; Bauer M; Libantová J
    Theor Appl Genet; 2008 Nov; 117(8):1325-34. PubMed ID: 18779945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants.
    Bosselut N; Van Ghelder C; Claverie M; Voisin R; Onesto JP; Rosso MN; Esmenjaud D
    Plant Cell Rep; 2011 Jul; 30(7):1313-26. PubMed ID: 21409553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of real time PCR assays for detection and quantification of transgene DNA of a Bacillus thuringiensis (Bt) corn hybrid in soil samples.
    Zhu B; Ma BL; Blackshaw RE
    Transgenic Res; 2010 Oct; 19(5):765-74. PubMed ID: 20044792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge).
    Sandhu S; Altpeter F
    Plant Cell Rep; 2008 Nov; 27(11):1755-65. PubMed ID: 18758782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ploidy and homozygosity on transgene expression in primary tobacco transformants and their androgenetic progenies.
    Beaujean A; Sangwan RS; Hodges M; Sangwan-Norreel BS
    Mol Gen Genet; 1998 Nov; 260(4):362-71. PubMed ID: 9870701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR.
    Bubner B; Gase K; Baldwin IT
    BMC Biotechnol; 2004 Jul; 4():14. PubMed ID: 15251044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants.
    Stefano B; Patrizia B; Matteo C; Massimo G
    Biochem Genet; 2016 Jun; 54(3):291-305. PubMed ID: 26895172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the Copy Number of Transgenes in Transformed Cotton by Real-Time Quantitative PCR.
    Yi C; Hong Y
    Methods Mol Biol; 2019; 1902():137-157. PubMed ID: 30543067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.