These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20637080)

  • 1. Automated assay for screening the enzymatic release of reducing sugars from micronized biomass.
    Navarro D; Couturier M; da Silva GG; Berrin JG; Rouau X; Asther M; Bignon C
    Microb Cell Fact; 2010 Jul; 9():58. PubMed ID: 20637080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The analysis of saccharification in biomass using an automated high-throughput method.
    Whitehead C; Gomez LD; McQueen-Mason SJ
    Methods Enzymol; 2012; 510():37-50. PubMed ID: 22608720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated saccharification assay for determination of digestibility in plant materials.
    Gomez LD; Whitehead C; Barakate A; Halpin C; McQueen-Mason SJ
    Biotechnol Biofuels; 2010 Oct; 3():23. PubMed ID: 20979637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM
    Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.
    Walton J; Banerjee G; Car S
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive high-throughput screening for the detection of reducing sugars.
    Mellitzer A; Glieder A; Weis R; Reisinger C; Flicker K
    Biotechnol J; 2012 Jan; 7(1):155-62. PubMed ID: 21538898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.
    Vidal-Melgosa S; Pedersen HL; Schückel J; Arnal G; Dumon C; Amby DB; Monrad RN; Westereng B; Willats WG
    J Biol Chem; 2015 Apr; 290(14):9020-36. PubMed ID: 25657012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.
    Morschett H; Wiechert W; Oldiges M
    Microb Cell Fact; 2016 Feb; 15():34. PubMed ID: 26861538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput screening of environmental polysaccharide-degrading bacteria using biomass containment and complex insoluble substrates.
    Monge EC; Levi M; Forbin JN; Legesse MD; Udo BA; deCarvalho TN; Gardner JG
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3379-3389. PubMed ID: 32114675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.
    Chundawat SP; Balan V; Dale BE
    Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic implementation of assays: tissue-nonspecific alkaline phosphatase (TNAP) case study.
    Chung TD
    Methods Mol Biol; 2013; 1053():53-84. PubMed ID: 23860647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification.
    Cianchetta S; Galletti S; Burzi PL; Cerato C
    Enzyme Microb Technol; 2012 May; 50(6-7):304-10. PubMed ID: 22500897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.
    Maruthamuthu M; Jiménez DJ; Stevens P; van Elsas JD
    BMC Genomics; 2016 Jan; 17():86. PubMed ID: 26822785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina.
    Jagtap SS; Dhiman SS; Kim TS; Li J; Lee JK; Kang YC
    Bioresour Technol; 2013 Apr; 133():307-14. PubMed ID: 23434807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recalcitrant carbohydrates after enzymatic hydrolysis of pretreated lignocellulosic biomass.
    Alcántara MÁ; Dobruchowska J; Azadi P; García BD; Molina-Heredia FP; Reyes-Sosa FM
    Biotechnol Biofuels; 2016; 9():207. PubMed ID: 27713766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.
    Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV
    PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass.
    Ali N; Ting Z; Li H; Xue Y; Gan L; Liu J; Long M
    Mol Biotechnol; 2015 Sep; 57(9):859-67. PubMed ID: 26202492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel micronized woody biomass process for production of cost-effective clean fermentable sugars.
    Fu Y; Gu BJ; Wang J; Gao J; Ganjyal GM; Wolcott MP
    Bioresour Technol; 2018 Jul; 260():311-320. PubMed ID: 29631181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.
    van den Brink J; van Muiswinkel GC; Theelen B; Hinz SW; de Vries RP
    Appl Environ Microbiol; 2013 Feb; 79(4):1316-24. PubMed ID: 23241981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.