These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20637318)
1. Isolation of short peptide fragments from alpha-synuclein fibril core identifies a residue important for fibril nucleation: a possible implication for diagnostic applications. Yagi H; Takeuchi H; Ogawa S; Ito N; Sakane I; Hongo K; Mizobata T; Goto Y; Kawata Y Biochim Biophys Acta; 2010 Oct; 1804(10):2077-87. PubMed ID: 20637318 [TBL] [Abstract][Full Text] [Related]
2. Amyloid fibril formation of alpha-synuclein is accelerated by preformed amyloid seeds of other proteins: implications for the mechanism of transmissible conformational diseases. Yagi H; Kusaka E; Hongo K; Mizobata T; Kawata Y J Biol Chem; 2005 Nov; 280(46):38609-16. PubMed ID: 16162499 [TBL] [Abstract][Full Text] [Related]
3. Seed-dependent accelerated fibrillation of alpha-synuclein induced by periodic ultrasonication treatment. Kim HJ; Chatani E; Goto Y; Paik SR J Microbiol Biotechnol; 2007 Dec; 17(12):2027-32. PubMed ID: 18167451 [TBL] [Abstract][Full Text] [Related]
4. Characterization of fibrillation process of alpha-synuclein at the initial stage. Tashiro M; Kojima M; Kihara H; Kasai K; Kamiyoshihara T; Uéda K; Shimotakahara S Biochem Biophys Res Commun; 2008 May; 369(3):910-4. PubMed ID: 18329380 [TBL] [Abstract][Full Text] [Related]
5. Analysis of sheep α-synuclein provides a molecular strategy for the reduction of fibrillation. Bickle L; Hopwood JJ; Karageorgos L Biochim Biophys Acta Proteins Proteom; 2017 Mar; 1865(3):261-273. PubMed ID: 28007442 [TBL] [Abstract][Full Text] [Related]
6. Besides fibrillization: putative role of the peptide fragment 71-82 on the structural and assembly behavior of α-synuclein. Bédard L; Lefèvre T; Morin-Michaud É; Auger M Biochemistry; 2014 Oct; 53(41):6463-72. PubMed ID: 25255476 [TBL] [Abstract][Full Text] [Related]
7. The chaperone activity of α-synuclein: Utilizing deletion mutants to map its interaction with target proteins. Rekas A; Ahn KJ; Kim J; Carver JA Proteins; 2012 May; 80(5):1316-25. PubMed ID: 22274962 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of fibril formation by a 39-residue peptide (PAPf39) from human prostatic acidic phosphatase. Ye Z; French KC; Popova LA; Lednev IK; Lopez MM; Makhatadze GI Biochemistry; 2009 Dec; 48(48):11582-91. PubMed ID: 19902966 [TBL] [Abstract][Full Text] [Related]
9. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence. Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043 [TBL] [Abstract][Full Text] [Related]
10. Investigation on the Molecular Interactions Stabilizing the Structure of α-synuclein Fibril: An In silico Study. Sanjeev A; Mattaparthi VSK Cent Nerv Syst Agents Med Chem; 2017; 17(3):209-218. PubMed ID: 28460628 [TBL] [Abstract][Full Text] [Related]
12. Sequence determinants regulating fibrillation of human alpha-synuclein. Koo HJ; Lee HJ; Im H Biochem Biophys Res Commun; 2008 Apr; 368(3):772-8. PubMed ID: 18261982 [TBL] [Abstract][Full Text] [Related]
13. Structure and topology of the non-amyloid-beta component fragment of human alpha-synuclein bound to micelles: implications for the aggregation process. Bisaglia M; Trolio A; Bellanda M; Bergantino E; Bubacco L; Mammi S Protein Sci; 2006 Jun; 15(6):1408-16. PubMed ID: 16731975 [TBL] [Abstract][Full Text] [Related]
14. Taking a Bite Out of Amyloid: Mechanistic Insights into α-Synuclein Degradation by Cathepsin L. McGlinchey RP; Dominah GA; Lee JC Biochemistry; 2017 Aug; 56(30):3881-3884. PubMed ID: 28614652 [TBL] [Abstract][Full Text] [Related]
15. Role of different regions of alpha-synuclein in the assembly of fibrils. Qin Z; Hu D; Han S; Hong DP; Fink AL Biochemistry; 2007 Nov; 46(46):13322-30. PubMed ID: 17963364 [TBL] [Abstract][Full Text] [Related]
16. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture. Fukui N; Araki K; Hongo K; Mizobata T; Kawata Y J Biol Chem; 2016 Nov; 291(48):25217-25226. PubMed ID: 27742838 [TBL] [Abstract][Full Text] [Related]
17. Amyloid fibril formation and chaperone-like activity of peptides from alphaA-crystallin. Tanaka N; Tanaka R; Tokuhara M; Kunugi S; Lee YF; Hamada D Biochemistry; 2008 Mar; 47(9):2961-7. PubMed ID: 18232642 [TBL] [Abstract][Full Text] [Related]
18. The effect of amino acid substitution in the imperfect repeat sequences of alpha-synuclein on fibrillation. Harada R; Kobayashi N; Kim J; Nakamura C; Han SW; Ikebukuro K; Sode K Biochim Biophys Acta; 2009 Oct; 1792(10):998-1003. PubMed ID: 19596443 [TBL] [Abstract][Full Text] [Related]
19. A radish seed antifungal peptide with a high amyloid fibril-forming propensity. Garvey M; Meehan S; Gras SL; Schirra HJ; Craik DJ; Van der Weerden NL; Anderson MA; Gerrard JA; Carver JA Biochim Biophys Acta; 2013 Aug; 1834(8):1615-23. PubMed ID: 23665069 [TBL] [Abstract][Full Text] [Related]
20. Tilted properties of the 67-78 fragment of alpha-synuclein are responsible for membrane destabilization and neurotoxicity. Crowet JM; Lins L; Dupiereux I; Elmoualija B; Lorin A; Charloteaux B; Stroobant V; Heinen E; Brasseur R Proteins; 2007 Sep; 68(4):936-47. PubMed ID: 17554782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]