These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20637415)

  • 1. Free state conformational sampling of the SAM-I riboswitch aptamer domain.
    Stoddard CD; Montange RK; Hennelly SP; Rambo RP; Sanbonmatsu KY; Batey RT
    Structure; 2010 Jul; 18(7):787-97. PubMed ID: 20637415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function.
    Whitford PC; Schug A; Saunders J; Hennelly SP; Onuchic JN; Sanbonmatsu KY
    Biophys J; 2009 Jan; 96(2):L7-9. PubMed ID: 19167285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2010 Mar; 16(3):598-609. PubMed ID: 20106958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches.
    Weinberg Z; Regulski EE; Hammond MC; Barrick JE; Yao Z; Ruzzo WL; Breaker RR
    RNA; 2008 May; 14(5):822-8. PubMed ID: 18369181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy.
    Chen B; Zuo X; Wang YX; Dayie TK
    Nucleic Acids Res; 2012 Apr; 40(7):3117-30. PubMed ID: 22139931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.
    Mirihana Arachchilage G; Sherlock ME; Weinberg Z; Breaker RR
    RNA Biol; 2018 Mar; 15(3):371-378. PubMed ID: 29106323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Ensembles from Solvent Accessibility Data: Application to the SAM-I Riboswitch Aptamer Domain.
    Xie J; Frank AT
    J Phys Chem B; 2021 Apr; 125(14):3486-3493. PubMed ID: 33818089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of the purine and SAM binding riboswitches.
    Gilbert SD; Montange RK; Stoddard CD; Batey RT
    Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
    Poiata E; Meyer MM; Ames TD; Breaker RR
    RNA; 2009 Nov; 15(11):2046-56. PubMed ID: 19776155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ligand-free state of the TPP riboswitch: a partially folded RNA structure.
    Ali M; Lipfert J; Seifert S; Herschlag D; Doniach S
    J Mol Biol; 2010 Feb; 396(1):153-65. PubMed ID: 19925806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch.
    Heppell B; Blouin S; Dussault AM; Mulhbacher J; Ennifar E; Penedo JC; Lafontaine DA
    Nat Chem Biol; 2011 Jun; 7(6):384-92. PubMed ID: 21532599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for diversity in the SAM clan of riboswitches.
    Trausch JJ; Xu Z; Edwards AL; Reyes FE; Ross PE; Knight R; Batey RT
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6624-9. PubMed ID: 24753586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch.
    Boyapati VK; Huang W; Spedale J; Aboul-Ela F
    RNA; 2012 Jun; 18(6):1230-43. PubMed ID: 22543867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.
    Sharma M; Bulusu G; Mitra A
    RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element.
    Montange RK; Batey RT
    Nature; 2006 Jun; 441(7097):1172-5. PubMed ID: 16810258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.
    Ding J; Swain M; Yu P; Stagno JR; Wang YX
    J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding.
    Li C; Zhao X; Xie P; Hu J; Bi H
    J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.