These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
884 related articles for article (PubMed ID: 20637469)
21. Headspace gas chromatography-mass spectrometry: a fast approach to the identification and determination of 2-alkyl-3- methoxypyrazine pheromones in ladybugs. Cudjoe E; Wiederkehr TB; Brindle ID Analyst; 2005 Feb; 130(2):152-5. PubMed ID: 15665967 [TBL] [Abstract][Full Text] [Related]
22. Evolution and occurrence of 1,8-cineole (eucalyptol) in Australian wine. Capone DL; Van Leeuwen K; Taylor DK; Jeffery DW; Pardon KH; Elsey GM; Sefton MA J Agric Food Chem; 2011 Feb; 59(3):953-9. PubMed ID: 21204528 [TBL] [Abstract][Full Text] [Related]
23. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. I. Method development and optimization. Setkova L; Risticevic S; Pawliszyn J J Chromatogr A; 2007 Apr; 1147(2):213-23. PubMed ID: 17359985 [TBL] [Abstract][Full Text] [Related]
24. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines. Weldegergis BT; Crouch AM; Górecki T; de Villiers A Anal Chim Acta; 2011 Sep; 701(1):98-111. PubMed ID: 21763815 [TBL] [Abstract][Full Text] [Related]
25. Different headspace solid phase microextraction--gas chromatography/mass spectrometry approaches to haloanisoles analysis in wine. Jeleń HH; Dziadas M; Majcher M J Chromatogr A; 2013 Oct; 1313():185-93. PubMed ID: 23932370 [TBL] [Abstract][Full Text] [Related]
26. Optimization of two-dimensional gas chromatography time-of-flight mass spectrometry for separation and estimation of the residues of 160 pesticides and 25 persistent organic pollutants in grape and wine. Dasgupta S; Banerjee K; Patil SH; Ghaste M; Dhumal KN; Adsule PG J Chromatogr A; 2010 Jun; 1217(24):3881-9. PubMed ID: 20435316 [TBL] [Abstract][Full Text] [Related]
27. Sample preparation optimization in wine and grapes. Dilution and sample/headspace volume equilibrium theory for headspace solid-phase microextraction. Kalua CM; Boss PK J Chromatogr A; 2008 May; 1192(1):25-35. PubMed ID: 18400228 [TBL] [Abstract][Full Text] [Related]
28. Rapid measurement of 3-alkyl-2-methoxypyrazine content of winegrapes to predict levels in resultant wines. Ryona I; Pan BS; Sacks GL J Agric Food Chem; 2009 Sep; 57(18):8250-7. PubMed ID: 19754166 [TBL] [Abstract][Full Text] [Related]
29. Determination of glutathione content in grape juice and wine by high-performance liquid chromatography with fluorescence detection. Janes L; Lisjak K; Vanzo A Anal Chim Acta; 2010 Aug; 674(2):239-42. PubMed ID: 20678636 [TBL] [Abstract][Full Text] [Related]
30. Mass spectrometry in the analysis of grape and wine proteins. Flamini R; De Rosso M Expert Rev Proteomics; 2006 Jun; 3(3):321-31. PubMed ID: 16771704 [TBL] [Abstract][Full Text] [Related]
31. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction as a powerful tool for quantification of ethyl carbamate in fortified wines. The case study of Madeira wine. Perestrelo R; Petronilho S; Câmara JS; Rocha SM J Chromatogr A; 2010 May; 1217(20):3441-5. PubMed ID: 20388567 [TBL] [Abstract][Full Text] [Related]
32. Isotope dilution-gas chromatography/mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry for the determination of triiodo-L-thyronine in serum. Thienpont LM; Fierens C; De Leenheer AP; Przywara L Rapid Commun Mass Spectrom; 1999; 13(19):1924-31. PubMed ID: 10487939 [TBL] [Abstract][Full Text] [Related]
33. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. III. Relative characterization of Canadian and Czech ice wines using self-organizing maps. Giraudel JL; Setkova L; Pawliszyn J; Montury M J Chromatogr A; 2007 Apr; 1147(2):241-53. PubMed ID: 17346718 [TBL] [Abstract][Full Text] [Related]
34. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. Rocha SM; Coelho E; Zrostlíková J; Delgadillo I; Coimbra MA J Chromatogr A; 2007 Aug; 1161(1-2):292-9. PubMed ID: 17585921 [TBL] [Abstract][Full Text] [Related]
35. Enantiodifferentiation of 3-sec-butyl-2-methoxypyrazine in different species using multidimensional and comprehensive two-dimensional gas chromatographic approaches. Legrum C; Slabizki P; Schmarr HG Anal Bioanal Chem; 2015 Jan; 407(1):253-63. PubMed ID: 25146352 [TBL] [Abstract][Full Text] [Related]
36. A simplified protein precipitation/mixed-mode cation-exchange solid-phase extraction, followed by high-speed liquid chromatography/mass spectrometry, for the determination of a basic drug in human plasma. Xue YJ; Akinsanya JB; Liu J; Unger SE Rapid Commun Mass Spectrom; 2006; 20(18):2660-8. PubMed ID: 16912986 [TBL] [Abstract][Full Text] [Related]
37. Determination of volatile oak compounds in wine by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Carrillo JD; Garrido-López A; Tena MT J Chromatogr A; 2006 Jan; 1102(1-2):25-36. PubMed ID: 16280128 [TBL] [Abstract][Full Text] [Related]
38. Determination of phenolic compounds in wines by novel matrix solid-phase dispersion extraction and gas chromatography/mass spectrometry. Minuti L; Pellegrino R J Chromatogr A; 2008 Mar; 1185(1):23-30. PubMed ID: 18262536 [TBL] [Abstract][Full Text] [Related]
39. Concurrent quantification of light and heavy sulphur volatiles in wine by headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry. Fedrizzi B; Magno F; Moser S; Nicolini G; Versini G Rapid Commun Mass Spectrom; 2007; 21(5):707-14. PubMed ID: 17279596 [TBL] [Abstract][Full Text] [Related]
40. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection. Fariña L; Boido E; Carrau F; Dellacassa E J Chromatogr A; 2007 Jul; 1157(1-2):46-50. PubMed ID: 17517420 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]