These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20637516)

  • 21. Rapid detection of Listeria monocytogenes in food by polymerase chain reaction.
    Ennaji H; Timinouni M; Ennaji MM; Ait m'hand R; Hassar M; Cohen N
    Cell Mol Biol (Noisy-le-grand); 2009 Feb; 55 Suppl():OL1104-10. PubMed ID: 19267993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a multiplex PCR system for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7 in foods and in food subjected to freezing.
    Kawasaki S; Fratamico PM; Horikoshi N; Okada Y; Takeshita K; Sameshima T; Kawamoto S
    Foodborne Pathog Dis; 2009; 6(1):81-9. PubMed ID: 18991547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upstream sample processing facilitates PCR detection of Listeria monocytogenes in mayonnaise-based ready-to-eat (RTE) salads.
    Isonhood J; Drake M; Jaykus LA
    Food Microbiol; 2006 Sep; 23(6):584-90. PubMed ID: 16943055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple, rapid and sensitive detection of salmonella in food by polymerase chain reaction.
    Jitrapakdee S; Tassanakajon A; Boonsaeng V; Piankijagum S; Panyim S
    Mol Cell Probes; 1995 Dec; 9(6):375-82. PubMed ID: 8808307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an immobilization and detection method of Enterobacter sakazakii from powdered infant formula.
    Zhou Y; Wu Q; Xu X; Yang X; Ye Y; Zhang J
    Food Microbiol; 2008 Aug; 25(5):648-52. PubMed ID: 18541162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua.
    Oravcová K; Trncíková T; Kuchta T; Kaclíková E
    J Appl Microbiol; 2008 Feb; 104(2):429-37. PubMed ID: 17887983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and validation of a real-time PCR assay specific for Clostridium estertheticum and C. estertheticum-like psychrotolerant bacteria.
    Brightwell G; Clemens R
    Meat Sci; 2012 Dec; 92(4):697-703. PubMed ID: 22782010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Farm level survey of spore-forming bacteria on four dairy farms in the Waikato region of New Zealand.
    Gupta TB; Brightwell G
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28256808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera).
    Hamiduzzaman MM; Guzman-Novoa E; Goodwin PH
    J Invertebr Pathol; 2010 Oct; 105(2):151-5. PubMed ID: 20570679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA signature-based approaches for bacterial detection and identification.
    Albuquerque P; Mendes MV; Santos CL; Moradas-Ferreira P; Tavares F
    Sci Total Environ; 2009 Jun; 407(12):3641-51. PubMed ID: 19062077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target.
    O' Grady J; Sedano-Balbás S; Maher M; Smith T; Barry T
    Food Microbiol; 2008 Feb; 25(1):75-84. PubMed ID: 17993379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 16S rDNA-based PCR method for rapid and specific detection of Clostridium perfringens in food.
    Wang RF; Cao WW; Franklin W; Campbell W; Cerniglia CE
    Mol Cell Probes; 1994 Apr; 8(2):131-7. PubMed ID: 7935511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ detection of antibiotic-resistance elements in single Bacillus cereus spores.
    Laflamme C; Gendron L; Turgeon N; Filion G; Ho J; Duchaine C
    Syst Appl Microbiol; 2009 Aug; 32(5):323-33. PubMed ID: 19446419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A gyrB-based PCR for the detection of Vibrio vulnificus and its application for direct detection of this pathogen in oyster enrichment broths.
    Kumar HS; Parvathi A; Karunasagar I; Karunasagar I
    Int J Food Microbiol; 2006 Oct; 111(3):216-20. PubMed ID: 16854484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous detection and identification of Bacillus cereus group bacteria using multiplex PCR.
    Park SH; Kim HJ; Kim JH; Kim TW; Kim HY
    J Microbiol Biotechnol; 2007 Jul; 17(7):1177-82. PubMed ID: 18051330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food.
    Alarcón B; Vicedo B; Aznar R
    J Appl Microbiol; 2006 Feb; 100(2):352-64. PubMed ID: 16430512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of a culture-independent molecular method to study the ecology of Yersinia spp. in food.
    Cocolin L; Comi G
    Int J Food Microbiol; 2005 Nov; 105(1):71-82. PubMed ID: 16085330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens.
    Wang XW; Zhang L; Jin LQ; Jin M; Shen ZQ; An S; Chao FH; Li JW
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):225-33. PubMed ID: 17492283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE.
    Waters SM; Murphy RA; Power RF
    Int J Food Microbiol; 2006 Aug; 110(3):268-77. PubMed ID: 16814892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms.
    Coorevits A; De Jonghe V; Vandroemme J; Reekmans R; Heyrman J; Messens W; De Vos P; Heyndrickx M
    Syst Appl Microbiol; 2008 Jun; 31(2):126-40. PubMed ID: 18406093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.