These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20637605)

  • 1. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14.
    Guo H; Luo S; Chen L; Xiao X; Xi Q; Wei W; Zeng G; Liu C; Wan Y; Chen J; He Y
    Bioresour Technol; 2010 Nov; 101(22):8599-605. PubMed ID: 20637605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP).
    Luo S; Xiao X; Xi Q; Wan Y; Chen L; Zeng G; Liu C; Guo H; Chen J
    J Hazard Mater; 2011 Jun; 190(1-3):1079-82. PubMed ID: 21524847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.
    Luo S; Wan Y; Xiao X; Guo H; Chen L; Xi Q; Zeng G; Liu C; Chen J
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1637-44. PubMed ID: 20953602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.
    Luo SL; Chen L; Chen JL; Xiao X; Xu TY; Wan Y; Rao C; Liu CB; Liu YT; Lai C; Zeng GM
    Chemosphere; 2011 Nov; 85(7):1130-8. PubMed ID: 21868057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration.
    Choudhary S; Sar P
    Bioresour Technol; 2009 May; 100(9):2482-92. PubMed ID: 19162475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1.
    Yilmaz EI
    Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of weed species applied to remediation of soils contaminated with heavy metals.
    Wei SH; Zhou QX; Wang X; Cao W; Ren LP; Song YF
    J Environ Sci (China); 2004; 16(5):868-73. PubMed ID: 15559831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18.
    Luo S; Xu T; Chen L; Chen J; Rao C; Xiao X; Wan Y; Zeng G; Long F; Liu C; Liu Y
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1745-53. PubMed ID: 21792590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters.
    Pérez RM; Cabrera G; Gómez JM; Abalos A; Cantero D
    J Hazard Mater; 2010 Oct; 182(1-3):896-902. PubMed ID: 20667656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils.
    Peng KJ; Luo CL; Chen YH; Wang GP; Li XD; Shen ZG
    Bull Environ Contam Toxicol; 2009 Aug; 83(2):260-4. PubMed ID: 19290449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.
    Sun Y; Zhou Q; Diao C
    Bioresour Technol; 2008 Mar; 99(5):1103-10. PubMed ID: 17719774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.
    Rajkumar M; Ae N; Freitas H
    Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to the remediation of heavy metal liquid wastes via off-gases produced by Klebsiella pneumoniae M426.
    Essa AM; Creamer NJ; Brown NL; Macaskie LE
    Biotechnol Bioeng; 2006 Nov; 95(4):574-83. PubMed ID: 16958139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation and fate of selected heavy metals in a biological wastewater treatment system.
    Chipasa KB
    Waste Manag; 2003; 23(2):135-43. PubMed ID: 12623088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.
    Umrania VV
    Bioresour Technol; 2006 Jul; 97(10):1237-42. PubMed ID: 16324838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.