These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 20637852)

  • 1. Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions.
    Kim S; Lee J
    Int J Pharm; 2010 Sep; 397(1-2):218-24. PubMed ID: 20637852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants.
    Cheow WS; Ng ML; Kho K; Hadinoto K
    Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of freeze-drying drug nanosuspensions.
    Chung NO; Lee MK; Lee J
    Int J Pharm; 2012 Nov; 437(1-2):42-50. PubMed ID: 22877696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in-vitro release from sugar beads.
    Kayaert P; Anné M; Van den Mooter G
    J Pharm Pharmacol; 2011 Nov; 63(11):1446-53. PubMed ID: 21988425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redispersible drug nanoparticles prepared without dispersant by electro-spray drying.
    Ho H; Lee J
    Drug Dev Ind Pharm; 2012 Jun; 38(6):744-51. PubMed ID: 22010908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-Alpha-tocopherol acid polyethylene glycol 1000 succinate, an effective stabilizer during solidification transformation of baicalin nanosuspensions.
    Yue PF; Wan J; Wang Y; Li Y; Ma YQ; Yang M; Hu PY; Yuan HL; Wang CH
    Int J Pharm; 2013 Feb; 443(1-2):279-87. PubMed ID: 23291447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative Manufacturing Concepts for Solid Oral Dosage Forms From Drug Nanosuspensions Using Fluid Dispensing and Forced Drying Technology.
    Bonhoeffer B; Kwade A; Juhnke M
    J Pharm Sci; 2018 Mar; 107(3):909-921. PubMed ID: 29154900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and solidification of redispersible nanosuspensions.
    Zhang X; Guan J; Ni R; Li LC; Mao S
    J Pharm Sci; 2014 Jul; 103(7):2166-2176. PubMed ID: 24840928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion.
    Van Eerdenbrugh B; Froyen L; Van Humbeeck J; Martens JA; Augustijns P; Van den Mooter G
    Eur J Pharm Sci; 2008 Sep; 35(1-2):127-35. PubMed ID: 18644441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective mucoadhesive water-soluble polymers for the solidification transformation of phospholipid-bile salts-mixed micelles.
    Lv Q; Li X; Li R; Shen B; Xu H; Shen C; Dai L; Han J; Yuan H
    Pharmazie; 2014 Nov; 69(11):792-8. PubMed ID: 25985572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of solidification stress on the redispersibility of solid nanocrystals loaded with harmine.
    Yue P; Wang C; Dan J; Liu W; Wu Z; Yang M
    Int J Pharm; 2015 Mar; 480(1-2):107-15. PubMed ID: 25617675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effervescent redispersion of lyophilized polymeric nanoparticles.
    Figueroa CE; Adamson DH; Prud'homme RK
    Ther Deliv; 2013 Feb; 4(2):177-90. PubMed ID: 23343158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate.
    Lee MK; Kim MY; Kim S; Lee J
    J Pharm Sci; 2009 Dec; 98(12):4808-17. PubMed ID: 19475555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can spray freeze-drying improve the re-dispersion of crystalline nanoparticles of pure naproxen?
    Braig V; Konnerth C; Peukert W; Lee G
    Int J Pharm; 2019 Jun; 564():293-298. PubMed ID: 31022500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development.
    Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H
    Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications.
    Picco AS; Ferreira LF; Liberato MS; Mondo GB; Cardoso MB
    Nanomedicine (Lond); 2018 Jan; 13(2):179-190. PubMed ID: 29139338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable nanoparticle flocculates for dry powder aerosol formulation.
    Shi L; Plumley CJ; Berkland C
    Langmuir; 2007 Oct; 23(22):10897-901. PubMed ID: 17894513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the amorphous fraction of a dried nanosuspension caused by milling or by drying? A case study with Naproxen and Cinnarizine.
    Kayaert P; Van den Mooter G
    Eur J Pharm Biopharm; 2012 Aug; 81(3):650-6. PubMed ID: 22579733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.
    Susarla R; Sievens-Figueroa L; Bhakay A; Shen Y; Jerez-Rozo JI; Engen W; Khusid B; Bilgili E; Romañach RJ; Morris KR; Michniak-Kohn B; Davé RN
    Int J Pharm; 2013 Oct; 455(1-2):93-103. PubMed ID: 23911341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.