BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20638099)

  • 1. Potential of various herbaceous species to remove the endocrine disruptor bisphenol A from aqueous media.
    Loffredo E; Eliana Gattullo C; Traversa A; Senesi N
    Chemosphere; 2010 Sep; 80(11):1274-80. PubMed ID: 20638099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.
    Gattullo CE; Cunha BB; Rosa AH; Loffredo E
    Environ Technol; 2013; 34(21-24):3129-36. PubMed ID: 24617071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decontamination activity of ryegrass exudates towards bisphenol A in the absence and presence of dissolved natural organic matter.
    Gattullo CE; Kiersch K; Eckhardt KU; Baum C; Leinweber P; Loffredo E
    Int J Phytoremediation; 2015; 17(1-6):1-8. PubMed ID: 25174419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter.
    Gattullo CE; Bährs H; Steinberg CE; Loffredo E
    Sci Total Environ; 2012 Feb; 416():501-6. PubMed ID: 22209372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Floricultural Salvia plants have a high ability to eliminate bisphenol A.
    Okuhata H; Ikeda K; Miyasaka H; Takahashi S; Matsui T; Nakayama H; Kato K; Hirata K
    J Biosci Bioeng; 2010 Jul; 110(1):99-101. PubMed ID: 20541124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction.
    Reis AR; Sakakibara Y
    Water Sci Technol; 2012; 66(4):775-82. PubMed ID: 22766866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.
    Zhang G; Wang Y; Jiang J; Yang S
    Bull Environ Contam Toxicol; 2017 Jun; 98(6):770-775. PubMed ID: 28361461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants.
    Reis AR; Tabei K; Sakakibara Y
    J Hazard Mater; 2014 Jan; 265():79-88. PubMed ID: 24333944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bisphenol A removal from wastewater using self-organized TIO(2) nanotubular array electrodes.
    Brugnera MF; Rajeshwar K; Cardoso JC; Zanoni MV
    Chemosphere; 2010 Jan; 78(5):569-75. PubMed ID: 20035965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bisphenol A content in fish caught in two different sites of the Tyrrhenian Sea (Italy).
    Mita L; Bianco M; Viggiano E; Zollo F; Bencivenga U; Sica V; Monaco G; Portaccio M; Diano N; Colonna A; Lepore M; Canciglia P; Mita DG
    Chemosphere; 2011 Jan; 82(3):405-10. PubMed ID: 20971495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of endocrine disrupting compounds in harbour seawater and sediments.
    Robinson BJ; Hellou J
    Sci Total Environ; 2009 Oct; 407(21):5713-8. PubMed ID: 19665171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells.
    Neamţu M; Frimmel FH
    Water Res; 2006 Dec; 40(20):3745-50. PubMed ID: 17028063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis-rhizosphere bacteria association.
    Toyama T; Ojima T; Tanaka Y; Mori K; Morikawa M
    Water Sci Technol; 2013; 68(3):522-9. PubMed ID: 23925178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endocrine-disrupting phenols in selected rivers and bays in the Philippines.
    Santiago EC; Kwan CS
    Mar Pollut Bull; 2007 Jul; 54(7):1036-46. PubMed ID: 17512556
    [No Abstract]   [Full Text] [Related]  

  • 15. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosylation of bisphenol A by freshwater microalgae.
    Nakajima N; Teramoto T; Kasai F; Sano T; Tamaoki M; Aono M; Kubo A; Kamada H; Azumi Y; Saji H
    Chemosphere; 2007 Oct; 69(6):934-41. PubMed ID: 17629547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodecontamination of aqueous substrates from bisphenol A by ligninolytic fungi.
    Traversa A; Loffredo E; Gattullo CE; Senesi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1407-12. PubMed ID: 22571528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of bisphenol A with or without enzyme treatment on the proliferation and viability of MCF-7 cells.
    Ricupito A; Del Pozzo G; Diano N; Grano V; Portaccio M; Marino M; Bolli A; Galluzzo P; Bontempo P; Mita L; Altucci L; Mita DG
    Environ Int; 2009 Jan; 35(1):21-6. PubMed ID: 18640724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil.
    Evanylo GK; Abaye AO; Dundas C; Zipper CE; Lemus R; Sukkariyah B; Rockett J
    J Environ Qual; 2005; 34(5):1811-9. PubMed ID: 16151233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil.
    Wang Y; Oyaizu H
    J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.