BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 20638425)

  • 1. Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization.
    Cui Y; Li Y; Yang Y; Liu X; Lei L; Zhou L; Pan F
    J Biotechnol; 2010 Oct; 150(1):171-4. PubMed ID: 20638425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone.
    Kim M; Park JM; Um HJ; Lee DH; Lee KH; Kobayashi F; Iwasaka Y; Hong CS; Min J; Kim YH
    J Basic Microbiol; 2010 Jun; 50(3):218-26. PubMed ID: 20473952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization and stability assessment of Rhizopus oryzae lipase covalently immobilized on amino-functionalized magnetic nanoparticles.
    Pashangeh K; Akhond M; Karbalaei-Heidari HR; Absalan G
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):300-307. PubMed ID: 28711611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde.
    Dizge N; Keskinler B; Tanriseven A
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):34-8. PubMed ID: 18571389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase.
    Sui Y; Cui Y; Nie Y; Xia GM; Sun GX; Han JT
    Colloids Surf B Biointerfaces; 2012 May; 93():24-8. PubMed ID: 22225941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.
    Zhu YT; Ren XY; Liu YM; Wei Y; Qing LS; Liao X
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():278-85. PubMed ID: 24656379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of bovine catalase onto magnetic nanoparticles.
    Doğaç Yİ; Teke M
    Prep Biochem Biotechnol; 2013; 43(8):750-65. PubMed ID: 23876136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Fe
    Ulu A; Noma SAA; Koytepe S; Ates B
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1035-1045. PubMed ID: 29873527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of lipase onto micron-size magnetic beads.
    Liu X; Guan Y; Shen R; Liu H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug; 822(1-2):91-7. PubMed ID: 15998604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Yarrowia lipolytica lipase with dithiocarbamate modified magnetic carbon Fe
    Fathi Z; Doustkhah E; Rostamnia S; Darvishi F; Ghodsi A; Ide Y
    Int J Biol Macromol; 2018 Oct; 117():218-224. PubMed ID: 29800659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports.
    Bai YX; Li YF; Yang Y; Yi LX
    J Biotechnol; 2006 Oct; 125(4):574-82. PubMed ID: 16697482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles.
    Chiaradia V; Soares NS; Valério A; de Oliveira D; Araújo PH; Sayer C
    Appl Biochem Biotechnol; 2016 Oct; 180(3):558-575. PubMed ID: 27184256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.
    Temoçin Z
    J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study.
    Yeşiloğlu Y; Şit L
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):247-51. PubMed ID: 21117873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superparamagnetic polymer emulsion particles from a soap-free seeded emulsion polymerization and their application for lipase immobilization.
    Cui Y; Chen X; Li Y; Liu X; Lei L; Zhang Y; Qian J
    Appl Biochem Biotechnol; 2014 Jan; 172(2):701-12. PubMed ID: 24114322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods.
    Yang G; Wu J; Xu G; Yang L
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):351-6. PubMed ID: 20399626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the properties of lipase immobilized onto mesoporous resins by different methods.
    Wang W; Jiang Y; Zhou L; Gao J
    Appl Biochem Biotechnol; 2011 Jul; 164(5):561-72. PubMed ID: 21229333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme.
    Tang W; Chen C; Sun W; Wang P; Wei D
    Int J Biol Macromol; 2019 May; 128():814-824. PubMed ID: 30708009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of pectinase onto Fe3O4@SiO2-NH2 and its activity and stability.
    Fang G; Chen H; Zhang Y; Chen A
    Int J Biol Macromol; 2016 Jul; 88():189-95. PubMed ID: 27037054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus.
    Wang XY; Jiang XP; Li Y; Zeng S; Zhang YW
    Int J Biol Macromol; 2015 Apr; 75():44-50. PubMed ID: 25603148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.