BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 20638484)

  • 1. Molecular and cellular aspects of amphibian lens regeneration.
    Henry JJ; Tsonis PA
    Prog Retin Eye Res; 2010 Nov; 29(6):543-55. PubMed ID: 20638484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration.
    Grogg MW; Call MK; Okamoto M; Vergara MN; Del Rio-Tsonis K; Tsonis PA
    Nature; 2005 Dec; 438(7069):858-62. PubMed ID: 16341014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Genetic mechanisms of cell transdifferentiation].
    Mitashov VI
    Ontogenez; 2005; 36(4):292-9. PubMed ID: 16208940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microarray analysis of gene expression patterns during early phases of newt lens regeneration.
    Sousounis K; Michel CS; Bruckskotten M; Maki N; Borchardt T; Braun T; Looso M; Tsonis PA
    Mol Vis; 2013; 19():135-45. PubMed ID: 23378727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration of the lens as a phenomenon of cellular transdifferentiation: regulability of the differentiated state of the vertebrate pigment epithelial cell.
    Eguchi G; Itoh Y
    Trans Ophthalmol Soc U K (1962); 1982; 102 Pt 3():380-4. PubMed ID: 6964285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration.
    Zhang MW; Park H; Guo X; Nakamura K; Raphael RM; Kasper FK; Mikos AG; Tsonis PA
    Tissue Eng Part C Methods; 2010 Apr; 16(2):261-7. PubMed ID: 19514850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cell sources, regulatory factors and gene expression in the regeneration of the crystalline lens and retina in vertebrate animals].
    Mitashov VI
    Izv Akad Nauk Ser Biol; 1996; (3):298-318. PubMed ID: 8755029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression signatures in the newt irises during lens regeneration.
    Makarev E; Call MK; Grogg MW; Atkinson DL; Milash B; Odelberg SJ; Tsonis PA
    FEBS Lett; 2007 May; 581(9):1865-70. PubMed ID: 17434491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt.
    Ito M; Hayashi T; Kuroiwa A; Okamoto M
    Dev Growth Differ; 1999 Aug; 41(4):429-40. PubMed ID: 10466930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miRNAs in newt lens regeneration: specific control of proliferation and evidence for miRNA networking.
    Nakamura K; Maki N; Trinh A; Trask HW; Gui J; Tomlinson CR; Tsonis PA
    PLoS One; 2010 Aug; 5(8):e12058. PubMed ID: 20711456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lens regeneration in axolotl: new evidence of developmental plasticity.
    Suetsugu-Maki R; Maki N; Nakamura K; Sumanas S; Zhu J; Del Rio-Tsonis K; Tsonis PA
    BMC Biol; 2012 Dec; 10():103. PubMed ID: 23244204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous Oct-4 inhibits lens transdifferentiation in the newt Notophthalmus viridescens.
    Bhavsar RB; Tsonis PA
    PLoS One; 2014; 9(7):e102510. PubMed ID: 25019378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development.
    Mizuno N; Mochii M; Yamamoto TS; Takahashi TC; Eguchi G; Okada TS
    Differentiation; 1999 Nov; 65(3):141-9. PubMed ID: 10631811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulated lens regeneration from isolated pigmented epithelial cells of newt iris in culture in response to FGF2/4.
    Hayashi T; Mizuno N; Owaribe K; Kuroiwa A; Okamoto M
    Differentiation; 2002 May; 70(2-3):101-8. PubMed ID: 12076337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic lens forming potential of mouse lens epithelial versus newt iris pigment epithelial cells in three-dimensional culture.
    Hoffmann A; Nakamura K; Tsonis PA
    Tissue Eng Part C Methods; 2014 Feb; 20(2):91-103. PubMed ID: 23672748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinative roles of FGF and Wnt signals in iris-derived lens regeneration in newt eye.
    Hayashi T; Mizuno N; Kondoh H
    Dev Growth Differ; 2008 May; 50(4):279-87. PubMed ID: 18336581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular signatures that correlate with induction of lens regeneration in newts: lessons from proteomic analysis.
    Sousounis K; Bhavsar R; Looso M; Krüger M; Beebe J; Braun T; Tsonis PA
    Hum Genomics; 2014 Dec; 8(1):22. PubMed ID: 25496664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system for culturing iris pigment epithelial cells to study lens regeneration in newt.
    Bhavsar RB; Nakamura K; Tsonis PA
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21730940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient transfection system for functional gene analysis in adult amphibian lens regeneration.
    Hayashi T; Yamagishi A; Kuroiwa A; Mizuno N; Kondoh H; Okamoto M
    Dev Growth Differ; 2001 Aug; 43(4):361-70. PubMed ID: 11473543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.