These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 20638694)

  • 41. Hypergravity-induced increase in the apoplastic pH and its possible involvement in suppression of beta-glucan breakdown in maize seedlings.
    Soga K; Wakabayashi K; Hoson T; Kamisaka S
    Aust J Plant Physiol; 2000; 27(10):967-72. PubMed ID: 11806423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Semipreparative isolation of dehydrodiferulic and dehydrotriferulic acids as standard substances from maize bran.
    Bunzel M; Funk C; Steinhart H
    J Sep Sci; 2004 Sep; 27(13):1080-6. PubMed ID: 15495409
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor.
    Encina A; Fry SC
    Planta; 2005 Dec; 223(1):77-89. PubMed ID: 16049678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of storage on wall-bound phenolics in green asparagus.
    Rodriguez-Arcos RC; Smith AC; Waldron KW
    J Agric Food Chem; 2002 May; 50(11):3197-203. PubMed ID: 12009986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Methods for Determining Cell Wall-Bound Phenolics in Maize Stem Tissues.
    Santiago R; López-Malvar A; Souto C; Barros-Ríos J
    J Agric Food Chem; 2018 Feb; 66(5):1279-1284. PubMed ID: 29336154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling.
    Kerr EM; Fry SC
    Planta; 2004 May; 219(1):73-83. PubMed ID: 14872243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of ancymidol on cell wall metabolism in growing maize cells.
    Hernández-Altamirano JM; Largo-Gosens A; Martínez-Rubio R; Pereda D; Álvarez JM; Acebes JL; Encina A; García-Angulo P
    Planta; 2018 Apr; 247(4):987-999. PubMed ID: 29330614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrastructural effects of cellulose biosynthesis inhibitor herbicides on developing cotton fibers.
    Vaughn KC; Turley RB
    Protoplasma; 2001; 216(1-2):80-93. PubMed ID: 11732201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Esterified phenolics of the cell walls of chufa (Cyperus esculentusL. ) tubers and their role in texture.
    Parker ML; Ng A; Smith AC; Waldron KW
    J Agric Food Chem; 2000 Dec; 48(12):6284-91. PubMed ID: 11141285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves.
    Hossain MT; Soga K; Wakabayashi K; Kamisaka S; Fujii S; Yamamoto R; Hoson T
    J Plant Physiol; 2007 Apr; 164(4):385-93. PubMed ID: 16618521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell Wall Structure in Cells Adapted to Growth on the Cellulose-Synthesis Inhibitor 2,6-Dichlorobenzonitrile : A Comparison between Two Dicotyledonous Plants and a Graminaceous Monocot.
    Shedletzky E; Shmuel M; Trainin T; Kalman S; Delmer D
    Plant Physiol; 1992 Sep; 100(1):120-30. PubMed ID: 16652933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cellulose biosynthesis inhibitors: comparative effect on bean cell cultures.
    García-Angulo P; Alonso-Simón A; Encina A; Álvarez JM; Acebes JL
    Int J Mol Sci; 2012; 13(3):3685-3702. PubMed ID: 22489176
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of inhibitors of cellulose synthesis in cotton fibers.
    Montezinos D; Delmer DP
    Planta; 1980 Apr; 148(4):305-11. PubMed ID: 24310131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii.
    Kwok AC; Wong JT
    Plant Physiol; 2003 Apr; 131(4):1681-91. PubMed ID: 12692327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A batch assay using Calcofluor fluorescence to characterize cell wall regeneration in plant protoplasts.
    Meadows MG
    Anal Biochem; 1984 Aug; 141(1):38-42. PubMed ID: 6496935
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of dichlorobenzonitrile on the formation of cell wall appositions (plugs) in internodal cells of Chara corallina Klein ex. Willd, em. R.D.W. and Nitella flexilis (L.) Ag.
    Foissner I
    New Phytol; 1992 Jul; 121(3):447-455. PubMed ID: 33874147
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Responses of Mentha suspension-cultured cells to 2,4-dichlorophenoxyacetic acid and accumulation of esterified phenolic acids in their cell walls.
    Yang JG; Miyao S; Uchiyama T
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1522-7. PubMed ID: 10540737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of cell walls in bean (Phaseolus vulgaris L.) callus cultures tolerant to dichlobenil.
    Encina AE; Moral RM; Acebes JL; Álvarez JM
    Plant Sci; 2001 Jan; 160(2):331-339. PubMed ID: 11164605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between uridine nucleotide sugar activation of glutamic dehydrogenases in fungi and existence of chitin and cellulose in their walls.
    LéJohn HB
    Biochem Biophys Res Commun; 1971 Feb; 42(3):538-44. PubMed ID: 5542905
    [No Abstract]   [Full Text] [Related]  

  • 60. Identification of a receptor protein in cotton fibers for the herbicide 2,6-dichlorobenzonitrile.
    Delmer DP; Read SM; Cooper G
    Plant Physiol; 1987 Jun; 84(2):415-20. PubMed ID: 16665454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.