These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20638975)

  • 1. The induction of thrombus generation on nanostructured neutral polymer brush surfaces.
    Lai BF; Creagh AL; Janzen J; Haynes CA; Brooks DE; Kizhakkedathu JN
    Biomaterials; 2010 Sep; 31(26):6710-6718. PubMed ID: 20638975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The induction of thrombus generation on nanostructured neutral polymer brush surfaces.
    Lai BF; Creagh AL; Janzen J; Haynes CA; Brooks DE; Kizhakkedathu JN
    Biomaterials; 2010 Sep; 31(26):6710-8. PubMed ID: 20641167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion.
    Zou Y; Lai BF; Kizhakkedathu JN; Brooks DE
    Macromol Biosci; 2010 Dec; 10(12):1432-43. PubMed ID: 20954202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate structure dependent hemocompatibility of biomimetic functional polymer brushes on surfaces.
    Yu K; Lai BF; Kizhakkedathu JN
    Adv Healthc Mater; 2012 Mar; 1(2):199-213. PubMed ID: 23184724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes.
    Yu K; Andruschak P; Yeh HH; Grecov D; Kizhakkedathu JN
    Biomaterials; 2018 Jun; 166():79-95. PubMed ID: 29549767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density.
    Wang S; Zhu Y
    Langmuir; 2009 Dec; 25(23):13448-55. PubMed ID: 19863074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple model for grafted polymer brushes.
    Manciu M; Ruckenstein E
    Langmuir; 2004 Jul; 20(15):6490-500. PubMed ID: 15248741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes.
    Khanduyeva N; Senkovskyy V; Beryozkina T; Horecha M; Stamm M; Uhrich C; Riede M; Leo K; Kiriy A
    J Am Chem Soc; 2009 Jan; 131(1):153-61. PubMed ID: 19128176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonbiofouling polymer brush with latent aldehyde functionality as a template for protein micropatterning.
    Zou Y; Yeh PY; Rossi NA; Brooks DE; Kizhakkedathu JN
    Biomacromolecules; 2010 Jan; 11(1):284-93. PubMed ID: 20000794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature.
    Roosjen A; van der Mei HC; Busscher HJ; Norde W
    Langmuir; 2004 Dec; 20(25):10949-55. PubMed ID: 15568845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces.
    Sirchabesan M; Giasson S
    Langmuir; 2007 Sep; 23(19):9713-21. PubMed ID: 17696369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of polymer brush architecture on antibiofouling properties.
    Gunkel G; Weinhart M; Becherer T; Haag R; Huck WT
    Biomacromolecules; 2011 Nov; 12(11):4169-72. PubMed ID: 21932841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces.
    Knetsch ML; Aldenhoff YB; Koole LH
    Biomaterials; 2006 May; 27(14):2813-9. PubMed ID: 16427694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains.
    Feng W; Zhu S; Ishihara K; Brash JL
    Biointerphases; 2006 Mar; 1(1):50. PubMed ID: 20408615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling.
    Chang Y; Shu SH; Shih YJ; Chu CW; Ruaan RC; Chen WY
    Langmuir; 2010 Mar; 26(5):3522-30. PubMed ID: 19947616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces.
    Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T
    Langmuir; 2008 Jan; 24(2):511-7. PubMed ID: 18085801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.