BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 20639434)

  • 1. Microsomal cytochrome p450-mediated metabolism of protopanaxatriol ginsenosides: metabolite profile, reaction phenotyping, and structure-metabolism relationship.
    Hao H; Lai L; Zheng C; Wang Q; Yu G; Zhou X; Wu L; Gong P; Wang G
    Drug Metab Dispos; 2010 Oct; 38(10):1731-9. PubMed ID: 20639434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro studies on the oxidative metabolism of 20(s)-ginsenoside Rh2 in human, monkey, dog, rat, and mouse liver microsomes, and human liver s9.
    Li L; Chen X; Zhou J; Zhong D
    Drug Metab Dispos; 2012 Oct; 40(10):2041-53. PubMed ID: 22829543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes.
    Liu Y; Zhang JW; Li W; Ma H; Sun J; Deng MC; Yang L
    Toxicol Sci; 2006 Jun; 91(2):356-64. PubMed ID: 16547074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective oxidation metabolism of 20(S)-protopanaxatriol in human liver microsomes and in rats.
    Wang W; Ni Y; Wang L; Che X; Liu W; Meng Q
    Xenobiotica; 2015 May; 45(5):385-95. PubMed ID: 25430797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective formation and metabolism of 20(S)-protopanaxadiol ocotillol type epimers in vivo and in vitro.
    Wang W; Wang L; Wu X; Xu L; Meng Q; Liu W
    Chirality; 2015 Feb; 27(2):170-6. PubMed ID: 25422175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using β-glucosidase from Pyrococcus furiosus.
    Oh HJ; Shin KC; Oh DK
    Biotechnol Lett; 2014 Jan; 36(1):113-9. PubMed ID: 24078126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of human cytochrome P450 enzymes involved in the hepatic and intestinal biotransformation of 20(S)-protopanaxadiol.
    Chiu NT; Tomlinson Guns ES; Adomat H; Jia W; Deb S
    Biopharm Drug Dispos; 2014 Mar; 35(2):104-18. PubMed ID: 24151189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity.
    Liu Y; Li W; Li P; Deng MC; Yang SL; Yang L
    Biol Pharm Bull; 2004 Oct; 27(10):1555-60. PubMed ID: 15467194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of 4'-(p-toluenesulfonylamide)-4-hydroxychalcone using human liver microsomes and recombinant cytochrome P450s.
    Lee B; Wu Z; Lee T; Tan XF; Park KH; Liu KH
    Xenobiotica; 2016; 46(4):350-6. PubMed ID: 26330107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ginsenoside-mediated blockade of 1α,25-dihydroxyvitamin D3 inactivation in human liver and intestine in vitro.
    Deb S; Chin MY; Adomat H; Guns ES
    J Steroid Biochem Mol Biol; 2014 May; 141():94-103. PubMed ID: 24486455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes.
    Jiang R; Yamaori S; Takeda S; Yamamoto I; Watanabe K
    Life Sci; 2011 Aug; 89(5-6):165-70. PubMed ID: 21704641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450.
    Ghosal A; Satoh H; Thomas PE; Bush E; Moore D
    Drug Metab Dispos; 1996 Sep; 24(9):940-7. PubMed ID: 8886602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon PPT by using β-glucosidase from Thermotoga neapolitana.
    Bi YF; Wang XZ; Jiang S; Liu JS; Zheng MZ; Chen P
    Biotechnol Lett; 2019 May; 41(4-5):613-623. PubMed ID: 30968346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro.
    Bakken GV; Molden E; Knutsen K; Lunder N; Hermann M
    Drug Metab Dispos; 2012 Sep; 40(9):1778-84. PubMed ID: 22688609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms.
    Lee HK; Moon JK; Chang CH; Choi H; Park HW; Park BS; Lee HS; Hwang EC; Lee YD; Liu KH; Kim JH
    Drug Metab Dispos; 2006 Jul; 34(7):1090-5. PubMed ID: 16581944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolite profiling of ginsenoside Rg1 after oral administration in rat.
    Wang X; Wang C; Pu F; Lin P; Qian T
    Biomed Chromatogr; 2014 Oct; 28(10):1320-4. PubMed ID: 24616108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations.
    Egorin MJ; Rosen DM; Wolff JH; Callery PS; Musser SM; Eiseman JL
    Cancer Res; 1998 Jun; 58(11):2385-96. PubMed ID: 9622079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro metabolism of tirilazad mesylate in male and female rats. Contribution of cytochrome P4502C11 and delta 4-5 alpha-reductase.
    Wienkers LC; Steenwyk RC; Mizsak SA; Pearson PG
    Drug Metab Dispos; 1995 Mar; 23(3):383-92. PubMed ID: 7628305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.
    Wei W; Wang P; Wei Y; Liu Q; Yang C; Zhao G; Yue J; Yan X; Zhou Z
    Mol Plant; 2015 Sep; 8(9):1412-24. PubMed ID: 26032089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.