These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. H-Wave induces arteriolar vasodilation in rat striated muscle via nitric oxide-mediated mechanisms. Smith TL; Blum K; Callahan MF; DiNubile NA; Chen TJ; Waite RL J Orthop Res; 2009 Sep; 27(9):1248-51. PubMed ID: 19204915 [TBL] [Abstract][Full Text] [Related]
8. Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Figueroa XF; Paul DL; Simon AM; Goodenough DA; Day KH; Damon DN; Duling BR Circ Res; 2003 Apr; 92(7):793-800. PubMed ID: 12637364 [TBL] [Abstract][Full Text] [Related]
9. Abolition of arteriolar dilation but not constriction to histamine in cremaster muscle of eNOS-/- mice. Payne GW; Madri JA; Sessa WC; Segal SS Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H493-8. PubMed ID: 12689855 [TBL] [Abstract][Full Text] [Related]
10. Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: role of eNOS and VE-cadherin. Alfieri A; Ong AC; Kammerer RA; Solanky T; Bate S; Tasab M; Brown NJ; Brookes ZL Pharmacol Res; 2014 Feb; 80():43-51. PubMed ID: 24407281 [TBL] [Abstract][Full Text] [Related]
11. Acute remote ischemic preconditioning II: the role of nitric oxide. Küntscher MV; Kastell T; Altmann J; Menke H; Gebhard MM; Germann G Microsurgery; 2002; 22(6):227-31. PubMed ID: 12375287 [TBL] [Abstract][Full Text] [Related]
12. Bradykinin relaxation in small porcine retinal arterioles. Jeppesen P; Aalkjaer C; Bek T Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1891-6. PubMed ID: 12036995 [TBL] [Abstract][Full Text] [Related]
14. Time course of flow-induced vasodilation in skeletal muscle: contributions of dilator and constrictor mechanisms. Shipley RD; Kim SJ; Muller-Delp JM Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1499-507. PubMed ID: 15576446 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide contribution to vascular wall oxygen consumption in arterioles. Shibata M; Yamakoshi T; Yamakoshi K Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6703-6. PubMed ID: 17959491 [TBL] [Abstract][Full Text] [Related]
16. Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo. Wölfle SE; Schmidt VJ; Hoyer J; Köhler R; de Wit C Cardiovasc Res; 2009 Jun; 82(3):476-83. PubMed ID: 19218287 [TBL] [Abstract][Full Text] [Related]
17. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Siegl D; Koeppen M; Wölfle SE; Pohl U; de Wit C Circ Res; 2005 Oct; 97(8):781-8. PubMed ID: 16166558 [TBL] [Abstract][Full Text] [Related]
18. Potentiation of pulmonary arteriolar vasoconstriction to endothelin-1 by inhibition of nitric oxide synthesis in the intact lung. Roberts AM; Slaaf DW; Joshua IG Microcirculation; 1998; 5(4):289-98. PubMed ID: 9866120 [TBL] [Abstract][Full Text] [Related]
19. Conducted vascular responses: communication across the capillary bed. Collins DM; McCullough WT; Ellsworth ML Microvasc Res; 1998 Jul; 56(1):43-53. PubMed ID: 9683562 [TBL] [Abstract][Full Text] [Related]
20. Conducted vasoconstriction is reduced in a mouse model of sepsis. Lidington D; Ouellette Y; Li F; Tyml K J Vasc Res; 2003; 40(2):149-58. PubMed ID: 12808351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]