BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20639947)

  • 1. Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering.
    Giacomelli M; Zhu Y; Lee J; Wax A
    Opt Express; 2010 Jul; 18(14):14616-26. PubMed ID: 20639947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning fiber angle-resolved low coherence interferometry.
    Zhu Y; Terry NG; Wax A
    Opt Lett; 2009 Oct; 34(20):3196-8. PubMed ID: 19838271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-optic interferometric two-dimensional scattering-measurement system.
    Zhu Y; Giacomelli MG; Wax A
    Opt Lett; 2010 May; 35(10):1641-3. PubMed ID: 20479835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy.
    Pyhtila JW; Boyer JD; Chalut KJ; Wax A
    Opt Lett; 2006 Mar; 31(6):772-4. PubMed ID: 16544619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei.
    Amoozegar C; Giacomelli MG; Keener JD; Chalut KJ; Wax A
    Appl Opt; 2009 Apr; 48(10):D20-5. PubMed ID: 19340110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry.
    Wax A; Yang C; Backman V; Kalashnikov M; Dasari RR; Feld MS
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):737-44. PubMed ID: 11934166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial scanning of a sample with two-dimensional angle-resolved low-coherence interferometry for analysis of anisotropic scatterers.
    Song G; Steelman ZA; Kendall W; Park HS; Wax A
    Biomed Opt Express; 2020 Aug; 11(8):4419-4430. PubMed ID: 32923053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry.
    Pyhtila JW; Wax A
    Opt Express; 2004 Dec; 12(25):6178-83. PubMed ID: 17195864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries.
    Chalut KJ; Giacomelli MG; Wax A
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1866-74. PubMed ID: 18677348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angular-domain scattering interferometry.
    Shipp DW; Qian R; Berger AJ
    Opt Lett; 2013 Nov; 38(22):4750-3. PubMed ID: 24322123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering.
    Giacomelli MG; Chalut KJ; Ostrander JH; Wax A
    Opt Lett; 2008 Nov; 33(21):2452-4. PubMed ID: 18978884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier-domain low-coherence interferometry for light-scattering spectroscopy.
    Wax A; Yang C; Izatt JA
    Opt Lett; 2003 Jul; 28(14):1230-2. PubMed ID: 12885030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of optical parameters of polystyrene spheres in dense aqueous suspensions.
    Xia H; Miao C; Cheng J; Tao S; Pang R; Wu X
    Appl Opt; 2012 Jun; 51(16):3263-8. PubMed ID: 22695559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.
    Moskalensky AE; Yurkin MA; Konokhova AI; Strokotov DI; Nekrasov VM; Chernyshev AV; Tsvetovskaya GA; Chikova ED; Maltsev VP
    J Biomed Opt; 2013 Jan; 18(1):17001. PubMed ID: 23288415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.
    Zhu Y; Terry NG; Woosley JT; Shaheen NJ; Wax A
    J Biomed Opt; 2011; 16(1):011003. PubMed ID: 21280890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry.
    Pyhtila JW; Ma H; Simnick AJ; Chilkoti A; Wax A
    J Biomed Opt; 2006; 11(3):34022. PubMed ID: 16822071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Picosecond light scattering measurements of cataract microstructure.
    Bruckner AP
    Appl Opt; 1978 Oct; 17(19):3177-83. PubMed ID: 20203943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Mie theory to determine the structure of spheroidal scatterers in biological materials.
    Keener JD; Chalut KJ; Pyhtila JW; Wax A
    Opt Lett; 2007 May; 32(10):1326-8. PubMed ID: 17440576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrieving the axial position of fluorescent light emitting spots by shearing interferometry.
    Schindler J; Schau P; Brodhag N; Frenner K; Osten W
    J Biomed Opt; 2016 Dec; 21(12):125009. PubMed ID: 28030743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of angular distributions of Rayleigh and Mie scattering events in biological models.
    Frank KH; Kessler M; Appelbaum K; Albrecht HP; Mauch ED
    Phys Med Biol; 1989 Dec; 34(12):1901-16. PubMed ID: 2616640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.