These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20640167)

  • 1. Amplified spontaneous emission properties of semiconducting organic materials.
    Calzado EM; Boj PG; Díaz-García MA
    Int J Mol Sci; 2010 Jun; 11(6):2546-65. PubMed ID: 20640167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers.
    Morales-Vidal M; Boj PG; Villalvilla JM; Quintana JA; Yan Q; Lin NT; Zhu X; Ruangsupapichat N; Casado J; Tsuji H; Nakamura E; Díaz-García MA
    Nat Commun; 2015 Sep; 6():8458. PubMed ID: 26416643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure of the buried interface between an organic semiconductor, N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), and metal surfaces.
    Yoshida H; Ito E; Hara M; Sato N
    J Nanosci Nanotechnol; 2012 Jan; 12(1):494-8. PubMed ID: 22524008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blue surface-emitting distributed feedback lasers based on TPD-doped films.
    Calzado EM; Villalvilla JM; Boj PG; Quintana JA; Postigo PA; Díaz-García MA
    Appl Opt; 2010 Jan; 49(3):463-70. PubMed ID: 20090812
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Bonal V; Quintana JA; Villalvilla JM; Boj PG; Muñoz-Mármol R; Mira-Martínez JC; Díaz-García MA
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the Best Empiric Method to Quantify the Amplified Spontaneous Emission Threshold in Polymeric Active Waveguides.
    Milanese S; De Giorgi ML; Anni M
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiophene-Based Organic Semiconductors.
    Turkoglu G; Cinar ME; Ozturk T
    Top Curr Chem (Cham); 2017 Oct; 375(6):84. PubMed ID: 29063993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End Cap Effect on Solution-Processable Deep Blue Lasing Materials with Low-Amplified Spontaneous Emission Thresholds.
    Sugai Y; Rahane VP; Gale I; Verdi C; Ireland AR; Canola S; McGregor SKM; Moore EG; Jain N; Namdas EB; Lo SC
    ACS Appl Mater Interfaces; 2024 Sep; 16(35):46506-46515. PubMed ID: 39158042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-free fluidic organic dye lasers.
    Choi EY; Mager L; Cham TT; Dorkenoo KD; Fort A; Wu JW; Barsella A; Ribierre JC
    Opt Express; 2013 May; 21(9):11368-75. PubMed ID: 23669993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides.
    Calzado EM; Ramírez MG; Boj PG; Díaz García MA
    Appl Opt; 2012 Jun; 51(16):3287-93. PubMed ID: 22695562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors.
    Huang H; Dorn A; Nair GP; Bulović V; Bawendi MG
    Nano Lett; 2007 Dec; 7(12):3781-6. PubMed ID: 18034504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design strategies for organic semiconductors beyond the molecular formula.
    Henson ZB; Müllen K; Bazan GC
    Nat Chem; 2012 Sep; 4(9):699-704. PubMed ID: 22914189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P
    Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-property relationship of amplified spontaneous emission in organic semiconductor materials: TPD, DPABP, and NPB.
    Wu Z; Ma L; Liu P; Zhou C; Ning S; El-Shafei A; Zhao X; Hou X
    J Phys Chem A; 2013 Oct; 117(42):10903-11. PubMed ID: 24032429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplified spontaneous emission in polymer films doped with a perylenediimide derivative.
    Calzado EM; Villalvilla JM; Boj PG; Quintana JA; Gómez R; Segura JL; Díaz García MA
    Appl Opt; 2007 Jun; 46(18):3836-42. PubMed ID: 17538681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment.
    Martini IB; Craig IM; Molenkamp WC; Miyata H; Tolbert SH; Schwartz BJ
    Nat Nanotechnol; 2007 Oct; 2(10):647-52. PubMed ID: 18654391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. F8BT Oligomers for Organic Solid-State Lasers.
    Mamada M; Komatsu R; Adachi C
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28383-28391. PubMed ID: 32453542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Diffracted Mode Outcoupling in the Context of Amplified Spontaneous Emission of Organic Thin Films.
    Pudleiner T; Hoinkis J; Karnutsch C
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic semiconductor growth and morphology considerations for organic thin-film transistors.
    Virkar AA; Mannsfeld S; Bao Z; Stingelin N
    Adv Mater; 2010 Sep; 22(34):3857-75. PubMed ID: 20715062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.