These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20640782)

  • 1. A novel Locally Linear Embedding and Wavelet Transform based encoding method for prediction of MHC-II binding affinity.
    Liu J; Li QJ; Zhang W
    Interdiscip Sci; 2010 Jun; 2(2):145-50. PubMed ID: 20640782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian regression approach to the prediction of MHC-II binding affinity.
    Zhang W; Liu J; Niu YQ; Wang L; Hu X
    Comput Methods Programs Biomed; 2008 Oct; 92(1):1-7. PubMed ID: 18562039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models.
    Liu W; Meng X; Xu Q; Flower DR; Li T
    BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the binding affinity of MHC class II peptides.
    Altiparmak F; Akalin A; Ferhatosmanoglu H
    Comput Syst Bioinformatics Conf; 2006; ():331-4. PubMed ID: 17369651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method.
    He J; Yang G; Rao H; Li Z; Ding X; Chen Y
    Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties.
    Cui J; Han LY; Lin HH; Tang ZQ; Jiang L; Cao ZW; Chen YZ
    Immunogenetics; 2006 Aug; 58(8):607-13. PubMed ID: 16832638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique.
    Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR
    J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.
    Jørgensen KW; Buus S; Nielsen M
    PLoS One; 2010 Dec; 5(12):e15877. PubMed ID: 21209859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.
    Andreatta M; Karosiene E; Rasmussen M; Stryhn A; Buus S; Nielsen M
    Immunogenetics; 2015 Nov; 67(11-12):641-50. PubMed ID: 26416257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building MHC class II epitope predictor using machine learning approaches.
    Eng LP; Tan TW; Tong JC
    Methods Mol Biol; 2015; 1268():67-73. PubMed ID: 25555721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVRMHC prediction server for MHC-binding peptides.
    Wan J; Liu W; Xu Q; Ren Y; Flower DR; Li T
    BMC Bioinformatics; 2006 Oct; 7():463. PubMed ID: 17059589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity between segments in protein conformational epitopes and MHC II peptides.
    Li G; Wu D; Wang S; Sun J; Xu D; Cao Z
    Int J Comput Biol Drug Des; 2013; 6(1-2):107-18. PubMed ID: 23428477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties.
    Cui J; Han LY; Lin HH; Zhang HL; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ
    Mol Immunol; 2007 Feb; 44(5):866-77. PubMed ID: 16806474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SVM and SVR-based MHC-binding prediction using a mathematical presentation of peptide sequences.
    Jandrlić DR
    Comput Biol Chem; 2016 Dec; 65():117-127. PubMed ID: 27816828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.