These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 20640819)
1. Importance of lone pair interactions/redistribution in hard and soft ligands within the active site of alcohol dehydrogenase Zn-metalloenzyme: Insights from electron localization function. De Courcy B; Gresh N; Piquemal JP Interdiscip Sci; 2009 Mar; 1(1):55-60. PubMed ID: 20640819 [TBL] [Abstract][Full Text] [Related]
2. Understanding selectivity of hard and soft metal cations within biological systems using the subvalence concept. I. Application to blood coagulation: direct cation-protein electronic effects vs. indirect interactions through water networks. de Courcy B; Pedersen LG; Parisel O; Gresh N; Silvi B; Pilmé J; Piquemal JP J Chem Theory Comput; 2010 Mar; 6(4):1048-1063. PubMed ID: 20419068 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Brandt EG; Hellgren M; Brinck T; Bergman T; Edholm O Phys Chem Chem Phys; 2009 Feb; 11(6):975-83. PubMed ID: 19177216 [TBL] [Abstract][Full Text] [Related]
4. Higher metal-ligand coordination in the catalytic site of cobalt-substituted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis. Kleifeld O; Rulísek L; Bogin O; Frenkel A; Havlas Z; Burstein Y; Sagi I Biochemistry; 2004 Jun; 43(22):7151-61. PubMed ID: 15170352 [TBL] [Abstract][Full Text] [Related]
5. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations. Gresh N; Piquemal JP; Krauss M J Comput Chem; 2005 Aug; 26(11):1113-30. PubMed ID: 15934064 [TBL] [Abstract][Full Text] [Related]
6. Correlation between electron localization and metal ion mutagenicity in DNA synthesis from QM/MM calculations. Chaudret R; Piquemal JP; Cisneros GA Phys Chem Chem Phys; 2011 Jun; 13(23):11239-47. PubMed ID: 21566841 [TBL] [Abstract][Full Text] [Related]
7. Active-site zinc ligands and activated H2O of zinc enzymes. Vallee BL; Auld DS Proc Natl Acad Sci U S A; 1990 Jan; 87(1):220-4. PubMed ID: 2104979 [TBL] [Abstract][Full Text] [Related]
8. Active site electronic structure and dynamics during metalloenzyme catalysis. Kleifeld O; Frenkel A; Martin JM; Sagi I Nat Struct Biol; 2003 Feb; 10(2):98-103. PubMed ID: 12524531 [TBL] [Abstract][Full Text] [Related]
9. A quantum chemical calculation on Fe(CO)5 revealing the operation of the Dewar-Chatt-Duncanson model. Bachler V J Comput Chem; 2012 Sep; 33(24):1936-47. PubMed ID: 22674406 [TBL] [Abstract][Full Text] [Related]
10. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites. Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase. Olson LP; Luo J; Almarsson O; Bruice TC Biochemistry; 1996 Jul; 35(30):9782-91. PubMed ID: 8703951 [TBL] [Abstract][Full Text] [Related]
12. New insight into the electronic structure of iron(IV)-oxo porphyrin compound I. A quantum chemical topological analysis. Viciano I; Berski S; Martí S; Andrés J J Comput Chem; 2013 Apr; 34(9):780-9. PubMed ID: 23233452 [TBL] [Abstract][Full Text] [Related]
13. Quantifying the nature of lone pair domains. Rahm M; Christe KO Chemphyschem; 2013 Nov; 14(16):3714-25. PubMed ID: 24019123 [TBL] [Abstract][Full Text] [Related]
14. The ins and outs of biological zinc sites. Auld DS Biometals; 2009 Feb; 22(1):141-8. PubMed ID: 19140015 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics simulations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion. Ryde U Proteins; 1995 Jan; 21(1):40-56. PubMed ID: 7716168 [TBL] [Abstract][Full Text] [Related]
16. Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates. Gresh N; de Courcy B; Piquemal JP; Foret J; Courtiol-Legourd S; Salmon L J Phys Chem B; 2011 Jun; 115(25):8304-16. PubMed ID: 21650197 [TBL] [Abstract][Full Text] [Related]
17. Protonation status of metal-bound ligands can be determined by quantum refinement. Nilsson K; Ryde U J Inorg Biochem; 2004 Sep; 98(9):1539-46. PubMed ID: 15337606 [TBL] [Abstract][Full Text] [Related]
18. Identification of the Zn(II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module. Farrell RA; Thorvaldsen JL; Winge DR Biochemistry; 1996 Feb; 35(5):1571-80. PubMed ID: 8634288 [TBL] [Abstract][Full Text] [Related]
19. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation. Carolan AN; Cockrell GM; Williams NJ; Zhang G; VanDerveer DG; Lee HS; Thummel RP; Hancock RD Inorg Chem; 2013 Jan; 52(1):15-27. PubMed ID: 23231454 [TBL] [Abstract][Full Text] [Related]
20. A topological study of the geometry of AF6E molecules: weak and inactive lone pairs. Pilmé J; Robinson EA; Gillespie RJ Inorg Chem; 2006 Aug; 45(16):6198-204. PubMed ID: 16878928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]