These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20640824)

  • 1. Suitable basis sets for accurate NMR chemical shift calculations: an application to in vivo studies of benzothiazole metabolites.
    Hoggan PE
    Interdiscip Sci; 2009 Jun; 1(2):99-107. PubMed ID: 20640824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory investigation of hydrogen bonding effects on the oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors of anhydrous chitosan crystalline structure.
    Esrafili MD; Elmi F; Hadipour NL
    J Phys Chem A; 2007 Feb; 111(5):963-70. PubMed ID: 17266238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study between para-aminophenyl and ortho-aminophenyl benzothiazoles using NMR and DFT calculations.
    Pierens GK; Venkatachalam TK; Reutens D
    Magn Reson Chem; 2014 Aug; 52(8):453-9. PubMed ID: 24890025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors.
    Brouwer DH; Enright GD
    J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.
    Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K
    J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical NMR study of selected oxocarboxylic acid oximes.
    Malek K; Vala M; Kozłowski H; Proniewicz LM
    Magn Reson Chem; 2004 Jan; 42(1):23-9. PubMed ID: 14745813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile.
    Arjunan V; Thillai Govindaraja S; Jose SP; Mohan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():22-36. PubMed ID: 24662754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR shielding as a probe of intermolecular interactions: ab initio and density functional theory studies.
    Platts JA; Gkionis K
    Phys Chem Chem Phys; 2009 Nov; 11(44):10331-9. PubMed ID: 19890517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical 13C chemical shift, 14N, and 2H quadrupole coupling- constant studies of hydrogen bonding in L-alanylglycine dipeptide.
    Tafazzoli M; Amini SK
    Magn Reson Chem; 2008 Apr; 46(4):370-6. PubMed ID: 18273875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for the preparation of pseudopure states in nuclear magnetic resonance quantum information processing.
    Fung BM; Ermakov VL
    J Chem Phys; 2004 Nov; 121(17):8410-4. PubMed ID: 15511162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM.
    Fritz M; Quinn CM; Wang M; Hou G; Lu X; Koharudin LMI; Struppe J; Case DA; Polenova T; Gronenborn AM
    Phys Chem Chem Phys; 2018 Apr; 20(14):9543-9553. PubMed ID: 29577158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design.
    Oldfield E
    Annu Rev Phys Chem; 2002; 53():349-78. PubMed ID: 11972012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of N-H...O and C-H...O hydrogen bonds on the 17O NMR tensors in crystalline uracil: computational study.
    Ida R; De Clerk M; Wu G
    J Phys Chem A; 2006 Jan; 110(3):1065-71. PubMed ID: 16420009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products.
    Cimino P; Gomez-Paloma L; Duca D; Riccio R; Bifulco G
    Magn Reson Chem; 2004 Oct; 42 Spec no():S26-33. PubMed ID: 15366038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-13 chemical-shift tensors in indigo: A two-dimensional NMR-ROCSA and DFT Study.
    Holmes ST; Dybowski C
    Solid State Nucl Magn Reson; 2015 Nov; 72():90-5. PubMed ID: 26344134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR chemical shift in an electronic state with arbitrary degeneracy.
    Van den Heuvel W; Soncini A
    Phys Rev Lett; 2012 Aug; 109(7):073001. PubMed ID: 23006364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.
    de Albuquerque AC; Ribeiro DJ; de Amorim MB
    J Mol Model; 2016 Aug; 22(8):183. PubMed ID: 27424297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.