These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20643684)

  • 1. High-throughput cardiac science on the Grid.
    Abramson D; Bernabeu MO; Bethwaite B; Burrage K; Corrias A; Enticott C; Garic S; Gavaghan D; Peachey T; Pitt-Francis J; Pueyo E; Rodriguez B; Sher A; Tan J
    Philos Trans A Math Phys Eng Sci; 2010 Aug; 368(1925):3907-23. PubMed ID: 20643684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification of cardiac tissue electrophysiology simulators using an N-version benchmark.
    Niederer SA; Kerfoot E; Benson AP; Bernabeu MO; Bernus O; Bradley C; Cherry EM; Clayton R; Fenton FH; Garny A; Heidenreich E; Land S; Maleckar M; Pathmanathan P; Plank G; Rodríguez JF; Roy I; Sachse FB; Seemann G; Skavhaug O; Smith NP
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1954):4331-51. PubMed ID: 21969679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Simultaneous measurements of electrical coupling and action potential transfer in pairs of ventricular cardiomyocytes].
    Rossini A; Zaniboni M; Cacciani F; Stilli D; Musso E
    Acta Biomed Ateneo Parmense; 2001; 72(5-6):83-9. PubMed ID: 12233270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of nonlinear cardiac cell dynamics using radial basis function regression.
    Kanaan-Izquierdo S; Velazquez S; Benitez R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6833-6. PubMed ID: 22255908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to modelling cardiac electrical activity in anatomically detailed ventricles.
    Clayton RH; Panfilov AV
    Prog Biophys Mol Biol; 2008; 96(1-3):19-43. PubMed ID: 17825362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling computer models of the heart for high-performance computers and the grid.
    Pitt-Francis J; Garny A; Gavaghan D
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1501-16. PubMed ID: 16766357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cellular model for the simulation of activation in the ventricular myocardium.
    Eifler WJ; Plonsey R
    J Electrocardiol; 1975; 8(2):117-28. PubMed ID: 1151192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer model of cardiac potential distribution in an infinite medium and on the human torso during ventricular activation.
    d' Alché P; Ducimetiere P; Lacombe J
    Circ Res; 1974 May; 34(5):719-29. PubMed ID: 4826941
    [No Abstract]   [Full Text] [Related]  

  • 9. Myokit: A simple interface to cardiac cellular electrophysiology.
    Clerx M; Collins P; de Lange E; Volders PG
    Prog Biophys Mol Biol; 2016 Jan; 120(1-3):100-14. PubMed ID: 26721671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of electrical interaction of cardiac cells.
    Heppner DB; Plonsey R
    Biophys J; 1970 Nov; 10(11):1057-75. PubMed ID: 5471697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?
    Johnstone RH; Chang ETY; Bardenet R; de Boer TP; Gavaghan DJ; Pathmanathan P; Clayton RH; Mirams GR
    J Mol Cell Cardiol; 2016 Jul; 96():49-62. PubMed ID: 26611884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport.
    Puglisi JL; Bers DM
    Am J Physiol Cell Physiol; 2001 Dec; 281(6):C2049-60. PubMed ID: 11698264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebrafish heart as a model for human cardiac electrophysiology.
    Vornanen M; Hassinen M
    Channels (Austin); 2016; 10(2):101-10. PubMed ID: 26671745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative reconstruction of cardiac electromechanics in human myocardium: regional heterogeneity.
    Seemann G; Sachse FB; Weiss DL; Dössel O
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S219-28. PubMed ID: 14760927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiology of the single cardiac cell: a voltage clamp study of the mechanism of the shortening of the action potential by metabolic inhibition in guinea-pig ventricular myocytes.
    Vereecke J
    Verh K Acad Geneeskd Belg; 1984; 46(1):33-52. PubMed ID: 6331020
    [No Abstract]   [Full Text] [Related]  

  • 16. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function.
    Benson AP; Stevenson-Cocks HJ; Whittaker DG; White E; Colman MA
    Methods; 2021 Jan; 185():60-81. PubMed ID: 31988002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac electrophysiology and tissue structure: bridging the scale gap with a joint measurement and modelling paradigm.
    Trew ML; Caldwell BJ; Sands GB; Hooks DA; Tai DC; Austin TM; LeGrice IJ; Pullan AJ; Smaill BH
    Exp Physiol; 2006 Mar; 91(2):355-70. PubMed ID: 16431935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic concepts in cellular cardiac electrophysiology: Part I: Ion channels, membrane currents, and the action potential.
    Whalley DW; Wendt DJ; Grant AO
    Pacing Clin Electrophysiol; 1995 Aug; 18(8):1556-74. PubMed ID: 7479177
    [No Abstract]   [Full Text] [Related]  

  • 19. The effects of caffeine on the electrical properties of isolated, single rat ventricular cells.
    Yatani A; Imoto Y; Goto M
    Jpn J Physiol; 1984; 34(2):337-49. PubMed ID: 6088873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.