BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20644503)

  • 1. Feeder-free adaptation, culture and passaging of human IPS cells using complete Knockout Serum Replacement feeder-free medium.
    Wagner K; Welch D
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryopreserving and recovering of human iPS cells using complete Knockout Serum Replacement feeder-free medium.
    Wagner K; Welch D
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective culture conditions for the induction of pluripotent stem cells.
    Okada M; Oka M; Yoneda Y
    Biochim Biophys Acta; 2010 Sep; 1800(9):956-63. PubMed ID: 20417254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium.
    Yamasaki S; Nabeshima K; Sotomaru Y; Taguchi Y; Mukasa H; Furue MK; Sato JD; Okamoto T
    Int J Dev Biol; 2013; 57(9-10):715-24. PubMed ID: 24307297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amniocytes can serve a dual function as a source of iPS cells and feeder layers.
    Anchan RM; Quaas P; Gerami-Naini B; Bartake H; Griffin A; Zhou Y; Day D; Eaton JL; George LL; Naber C; Turbe-Doan A; Park PJ; Hornstein MD; Maas RL
    Hum Mol Genet; 2011 Mar; 20(5):962-74. PubMed ID: 21156717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions.
    Miura T; Yuasa N; Ota H; Habu M; Kawano M; Nakayama F; Nishihara S
    Biochem Biophys Res Commun; 2019 Oct; 518(3):506-512. PubMed ID: 31439376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of feeder-free culture systems for generation of ckit+sca1+ progenitors from mouse iPS cells.
    Lin J; Fernandez I; Roy K
    Stem Cell Rev Rep; 2011 Sep; 7(3):736-47. PubMed ID: 21188655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human induced pluripotent stem cells on autologous feeders.
    Takahashi K; Narita M; Yokura M; Ichisaka T; Yamanaka S
    PLoS One; 2009 Dec; 4(12):e8067. PubMed ID: 19956543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging.
    Stover AE; Schwartz PH
    Methods Mol Biol; 2011; 767():137-46. PubMed ID: 21822872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
    Hartung O; Huo H; Daley GQ; Schlaeger TM
    Curr Protoc Stem Cell Biol; 2010 Aug; Chapter 1():Unit 1C.10. PubMed ID: 20814935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells.
    Kunova M; Matulka K; Eiselleova L; Trckova P; Hampl A; Dvorak P
    Reprod Biomed Online; 2010 Nov; 21(5):676-86. PubMed ID: 20884295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human iPS cell-derived fibroblast-like cells as feeder layers for iPS cell derivation and expansion.
    Du SH; Tay JC; Chen C; Tay FC; Tan WK; Li ZD; Wang S
    J Biosci Bioeng; 2015 Aug; 120(2):210-7. PubMed ID: 25622768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically labeled feeder system for mouse pluripotent stem cell culture.
    Horie M; Ito A; Maki T; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):614-6. PubMed ID: 25468421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions.
    Hayashi Y; Chan T; Warashina M; Fukuda M; Ariizumi T; Okabayashi K; Takayama N; Otsu M; Eto K; Furue MK; Michiue T; Ohnuma K; Nakauchi H; Asashima M
    PLoS One; 2010 Nov; 5(11):e14099. PubMed ID: 21124894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Establishment of feeder-free culture system of human parthenogenetic embryonic stem cells].
    Liang R; Wang Z; Chen T; Zhu J; Zhu S; Li Y; Yang L; Zhu B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):559-64. PubMed ID: 23879092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation.
    Fu X; Toh WS; Liu H; Lu K; Li M; Hande MP; Cao T
    Tissue Eng Part C Methods; 2010 Aug; 16(4):719-33. PubMed ID: 19911961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feeder- and serum-free establishment and expansion of human induced pluripotent stem cells.
    Totonchi M; Taei A; Seifinejad A; Tabebordbar M; Rassouli H; Farrokhi A; Gourabi H; Aghdami N; Hosseini-Salekdeh G; Baharvand H
    Int J Dev Biol; 2010; 54(5):877-86. PubMed ID: 19876814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts.
    Chen M; Sun X; Jiang R; Shen W; Zhong X; Liu B; Qi Y; Huang B; Xiang AP; Ge J
    Cell Biol Int; 2009 Dec; 33(12):1268-73. PubMed ID: 19524692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeder-independent culture of mouse embryonic stem cells using vitamin A/retinol.
    Khillan JS; Chen L
    Methods Mol Biol; 2010; 652():75-83. PubMed ID: 20552422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of protocols for mouse embryonic stem cell culturing.
    Tamm C; Pijuan Galitó S; Annerén C
    PLoS One; 2013; 8(12):e81156. PubMed ID: 24339907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.