These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20644665)

  • 1. Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device.
    Zhu X; Yi H; Ni Z
    Biomicrofluidics; 2010 Jan; 4(1):13202. PubMed ID: 20644665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains.
    Moncada-Hernandez H; Nagler E; Minerick AR
    Electrophoresis; 2014 Jul; 35(12-13):1803-13. PubMed ID: 24658965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Isomotive Insulator-Based Dielectrophoretic Device by Measuring the Particle Velocity.
    Nakabayashi R; Eguchi M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separating large microscale particles by exploiting charge differences with dielectrophoresis.
    Polniak DV; Goodrich E; Hill N; Lapizco-Encinas BH
    J Chromatogr A; 2018 Apr; 1545():84-92. PubMed ID: 29510869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarizability-Dependent Sorting of Microparticles Using Continuous-Flow Dielectrophoretic Chromatography with a Frequency Modulation Method.
    Giesler J; Pesch GR; Weirauch L; Schmidt MP; Thöming J; Baune M
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31905625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous separation of microparticles by size with direct current-dielectrophoresis.
    Kang KH; Kang Y; Xuan X; Li D
    Electrophoresis; 2006 Feb; 27(3):694-702. PubMed ID: 16385598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance characterization of an insulator-based dielectrophoretic microdevice.
    Ozuna-Chacón S; Lapizco-Encinas BH; Rito-Palomares M; Martínez-Chapa SO; Reyes-Betanzo C
    Electrophoresis; 2008 Aug; 29(15):3115-22. PubMed ID: 18654979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks.
    Lewpiriyawong N; Yang C; Lam YC
    Biomicrofluidics; 2008 Aug; 2(3):34105. PubMed ID: 19693372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Particle Mutual Interactions To Enable Challenging Dielectrophoretic Processes.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Anal Chem; 2017 Aug; 89(16):8459-8467. PubMed ID: 28683553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions.
    Ai Y; Zeng Z; Qian S
    J Colloid Interface Sci; 2014 Mar; 417():72-9. PubMed ID: 24407661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical studies of manipulation and separation of microparticles in ODEP-based microfluidic chips.
    Zhao K; Yao J; Wei Y; Kong D; Wang J
    Electrophoresis; 2024 Feb; ():. PubMed ID: 38419136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.