These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20644673)

  • 1. Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow.
    Ban H; Lin B; Song Z
    Biomicrofluidics; 2010 Feb; 4(1):14104. PubMed ID: 20644673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroviscous effect on fluid drag in a microchannel with large zeta potential.
    Jing D; Bhushan B
    Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.
    Das S; Chakraborty S
    Langmuir; 2010 Jul; 26(13):11589-96. PubMed ID: 20476752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers.
    Das S; Guha A; Mitra SK
    Anal Chim Acta; 2013 Dec; 804():159-66. PubMed ID: 24267077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillating laminar electrokinetic flow in infinitely extended circular microchannels.
    Bhattacharyya A; Masliyah JH; Yang J
    J Colloid Interface Sci; 2003 May; 261(1):12-20. PubMed ID: 12725819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit.
    Mei L; Zhang H; Meng H; Qian S
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of streaming potential flow and electroviscous effect in a shear-driven charged slit microchannel.
    Riad A; Khorshidi B; Sadrzadeh M
    Sci Rep; 2020 Oct; 10(1):18317. PubMed ID: 33110227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects.
    Dutta P; Beskok A
    Anal Chem; 2001 May; 73(9):1979-86. PubMed ID: 11354479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Streaming Potential of Fluid through a Microchannel with Modulated Charged Surfaces.
    Bian X; Li F; Jian Y
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential.
    Jing D; Pan Y; Wang X
    Beilstein J Nanotechnol; 2017; 8():1515-1522. PubMed ID: 28884056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-osmotic flow in a rotating rectangular microchannel.
    Ng CO; Qi C
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150200. PubMed ID: 26345088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of boundary slip and surface charge on the pressure-driven flow.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2013 Feb; 392():15-26. PubMed ID: 23137902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels.
    Ren CL; Li D
    J Colloid Interface Sci; 2004 Jun; 274(1):319-30. PubMed ID: 15120306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial basis function interpolation supplemented lattice Boltzmann method for electroosmotic flows in microchannel.
    Guo P; Qian F; Zhang W; Yan H; Wang Q; Zhao C
    Electrophoresis; 2021 Nov; 42(21-22):2171-2181. PubMed ID: 34549443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels.
    Yang C; Li D
    J Colloid Interface Sci; 1997 Oct; 194(1):95-107. PubMed ID: 9367589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.