These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20644673)

  • 21. Combined electroosmotically and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2015 Dec; 460():361-9. PubMed ID: 26385594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mass transfer and flow in electrically charged micro- and nanochannels.
    Conlisk AT; McFerran J; Zheng Z; Hansford D
    Anal Chem; 2002 May; 74(9):2139-50. PubMed ID: 12033318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels.
    Conlisk AT
    Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of zeta potential by electrokinetic analysis of ionic fluid flows through a divergent microchannel.
    Chun MS; Lee SY; Yang SM
    J Colloid Interface Sci; 2003 Oct; 266(1):120-6. PubMed ID: 12957590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Stress Jump Condition at the Interface Region of a Two-Layer Nanofluid Flow in a Microchannel with EDL Effects.
    Raees Ul Haq M; Raees A; Xu H; Xiao S
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single- versus Dual-Ion Conductors for Electric Double Layer Gating: Finite Element Modeling and Hall-Effect Measurements.
    Woeppel A; Xu K; Kozhakhmetov A; Awate S; Robinson JA; Fullerton-Shirey SK
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40850-40858. PubMed ID: 32805846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass transfer of a neutral solute in porous microchannel under streaming potential.
    Mondal S; De S
    Electrophoresis; 2014 Mar; 35(5):681-90. PubMed ID: 24339025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A general Poisson-Boltzmann model with position-dependent dielectric permittivity for electric double layer analysis.
    Le G; Zhang J
    Langmuir; 2011 May; 27(9):5366-70. PubMed ID: 21476554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2016 Aug; 476():167-176. PubMed ID: 27214147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels.
    Li J; Peng R; Li D
    Anal Chim Acta; 2019 Jun; 1059():68-79. PubMed ID: 30876634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroviscous Dissipation in Aqueous Electrolyte Films with Overlapping Electric Double Layers.
    Liu F; Klaassen A; Zhao C; Mugele F; van den Ende D
    J Phys Chem B; 2018 Jan; 122(2):933-946. PubMed ID: 28976197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pressure Drop of Microchannel Plate Fin Heat Sinks.
    Duan Z; Ma H; He B; Su L; Zhang X
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30678359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrokinetic flow and electric current in a fibrous porous medium.
    Wu YY; Keh HJ
    J Phys Chem B; 2012 Mar; 116(11):3578-86. PubMed ID: 22369485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The electroviscous force between charged particles: beyond the thin-double-layer approximation.
    Chun B; Ladd AJ
    J Colloid Interface Sci; 2004 Jun; 274(2):687-94. PubMed ID: 15144845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena.
    Das S; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012501. PubMed ID: 21867239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels.
    Yang J; Bhattacharyya A; Masliyah JH; Kwok DY
    J Colloid Interface Sci; 2003 May; 261(1):21-31. PubMed ID: 12725820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting ion concentration polarization and analyte stacking/focusing at nanofluidic interfaces.
    Flores-Galicia F; Eden A; Pallandre A; Pennathur S; Haghiri-Gosnet AM
    Electrophoresis; 2022 Mar; 43(5-6):741-751. PubMed ID: 35019166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-regulated ionic conductance in a nanochannel with overlapped electric double layers.
    Ma Y; Yeh LH; Lin CY; Mei L; Qian S
    Anal Chem; 2015 Apr; 87(8):4508-14. PubMed ID: 25803424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroosmotic Flow in Microchannels.
    Yang RJ; Fu LM; Lin YC
    J Colloid Interface Sci; 2001 Jul; 239(1):98-105. PubMed ID: 11397053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.