These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20644673)

  • 61. Streaming potential and electroosmotic flow in heterogeneous circular microchannels with nonuniform zeta potentials: requirements of flow rate and current continuities.
    Yang J; Masliyah JH; Kwok DY
    Langmuir; 2004 May; 20(10):3863-71. PubMed ID: 15969372
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Capillary transport of two immiscible fluids in presence of electroviscous retardation.
    Bandopadhyay A; Mandal S; Chakraborty S
    Electrophoresis; 2017 Mar; 38(5):747-754. PubMed ID: 27981589
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of electroosmotic flow of power-law fluids in a slit microchannel.
    Zhao C; Zholkovskij E; Masliyah JH; Yang C
    J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrophoretic motion of a spherical particle in a converging-diverging nanotube.
    Qian S; Wang A; Afonien JK
    J Colloid Interface Sci; 2006 Nov; 303(2):579-92. PubMed ID: 16979648
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electroosmotic flow in single PDMS nanochannels.
    Peng R; Li D
    Nanoscale; 2016 Jun; 8(24):12237-46. PubMed ID: 27256765
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Redefining electrical double layer thickness in narrow confinements: effect of solvent polarization.
    Das S; Chakraborty S; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051508. PubMed ID: 23004768
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electroviscous resistance of nanofluidic bends.
    Berry JD; Foong AE; Lade CE; Biscombe CJ; Davidson MR; Harvie DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043008. PubMed ID: 25375594
    [TBL] [Abstract][Full Text] [Related]  

  • 68. On the surface conductance, flow rate, and current continuities of microfluidics with nonuniform surface potentials.
    Tian F; Kwok DY
    Langmuir; 2005 Mar; 21(6):2192-8. PubMed ID: 15752006
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Streaming potential generated by a long viscous drop in a capillary.
    Sherwood JD
    Langmuir; 2008 Sep; 24(18):10011-8. PubMed ID: 18712893
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Numerical studies of continuous nutrient delivery for tumour spheroid culture in a microchannel by electrokinetically-induced pressure-driven flow.
    Movahed S; Li D
    Biomed Microdevices; 2010 Dec; 12(6):1061-72. PubMed ID: 20689992
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.
    Song H; Wang Y; Pant K
    Microfluid Nanofluidics; 2013 Jan; 14(1-2):371-382. PubMed ID: 23554584
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes.
    Das S; Hardt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):022502. PubMed ID: 21929048
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of Divalent Ions on Electroosmotic Flow in Microchannels.
    Datta S; Conlisk AT; Li HF; Yoda M
    Mech Res Commun; 2009 Jan; 36(1):65-74. PubMed ID: 22389537
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conditions for similitude between the fluid velocity and electric field in electroosmotic flow.
    Cummings EB; Griffiths SK; Nilson RH; Paul PH
    Anal Chem; 2000 Jun; 72(11):2526-32. PubMed ID: 10857630
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A quantitative model to evaluate the ion-enrichment and ion-depletion effect at microchannel-nanochannel junctions.
    Li G; Wang S; Byun CK; Wang X; Liu S
    Anal Chim Acta; 2009 Sep; 650(2):214-20. PubMed ID: 19720195
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The effect of the finite size of ions and Debye layer overspill on the screened Coulomb interactions between charged flat plates.
    Paul A; Mukherjee S; Dhar J; Ghosal S; Chakraborty S
    Electrophoresis; 2020 Apr; 41(7-8):607-614. PubMed ID: 31855289
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ion size and image effect on electrokinetic flows.
    Liu Y; Liu M; Lau WM; Yang J
    Langmuir; 2008 Mar; 24(6):2884-91. PubMed ID: 18237199
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup.
    Pillai R; Berry JD; Harvie DJ; Davidson MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013007. PubMed ID: 26274270
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids.
    Eisenberg B; Hyon Y; Liu C
    J Chem Phys; 2010 Sep; 133(10):104104. PubMed ID: 20849161
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes.
    Gao Y; Liu Y; Chen S
    Faraday Discuss; 2016 Dec; 193():251-263. PubMed ID: 27711816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.