These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20644679)

  • 1. Induced charge electro-osmotic concentration gradient generator.
    Jain M; Yeung A; Nandakumar K
    Biomicrofluidics; 2010 Mar; 4(1):14110. PubMed ID: 20644679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced charge electro osmotic mixer: Obstacle shape optimization.
    Jain M; Yeung A; Nandakumar K
    Biomicrofluidics; 2009 Jun; 3(2):22413. PubMed ID: 19693348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced-charge electrokinetic phenomena: theory and microfluidic applications.
    Bazant MZ; Squires TM
    Phys Rev Lett; 2004 Feb; 92(6):066101. PubMed ID: 14995255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS; Pascall AJ; Wilson NM; Squires TM
    Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced charge electro-osmotic particle separation.
    Chen X; Ren Y; Hou L; Feng X; Jiang T; Jiang H
    Nanoscale; 2019 Mar; 11(13):6410-6421. PubMed ID: 30888357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow rate independent gradient generator and application in microfluidic free-flow electrophoresis.
    Höving S; Janasek D; Novo P
    Anal Chim Acta; 2018 Dec; 1044():77-85. PubMed ID: 30442407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis.
    Yoshina-Ishii C; Boxer SG
    Langmuir; 2006 Feb; 22(5):2384-91. PubMed ID: 16489833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic device for generating a stepwise concentration gradient on a microwell slide for cell analysis.
    Weibull E; Matsui S; Sakai M; Andersson Svahn H; Ohashi T
    Biomicrofluidics; 2013; 7(6):64115. PubMed ID: 24396549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of induced-charge electro-osmotic flow in a microchannel embedded with polarizable dielectric blocks.
    Zhao C; Yang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046312. PubMed ID: 19905441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net fluid flow and non-Newtonian effect in induced-charge electro-osmosis of polyelectrolyte solutions.
    Feng H; Wong TN
    Phys Rev E; 2019 Jul; 100(1-1):013105. PubMed ID: 31499862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of 3D multi-layer microfluidic gradient generator.
    Ha JH; Kim TH; Lee JM; Ahrberg CD; Chung BG
    Electrophoresis; 2017 Jan; 38(2):270-277. PubMed ID: 27801504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instability of electro-osmotic channel flow with streamwise conductivity gradients.
    Santos JJ; Storey BD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046316. PubMed ID: 18999535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gradient-generating microfluidic device for cell biology.
    Chung BG; Manbachi A; Saadi W; Lin F; Jeon NL; Khademhosseini A
    J Vis Exp; 2007; (7):271. PubMed ID: 18989442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of droplets with adjustable chemical concentrations based on fixed potential induced-charge electro-osmosis.
    Wu Y; Hu B; Ma X; Zhang H; Li W; Wang Y; Wang S
    Lab Chip; 2022 Jan; 22(2):403-412. PubMed ID: 34950939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device.
    Du Y; Shim J; Vidula M; Hancock MJ; Lo E; Chung BG; Borenstein JT; Khabiry M; Cropek DM; Khademhosseini A
    Lab Chip; 2009 Mar; 9(6):761-7. PubMed ID: 19255657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration gradient generator using a convective-diffusive balance.
    Kang T; Han J; Lee KS
    Lab Chip; 2008 Jul; 8(7):1220-2. PubMed ID: 18584102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures.
    Sugioka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056321. PubMed ID: 21728661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.