These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20644679)

  • 21. Theoretical prediction of fast 3D AC electro-osmotic pumps.
    Bazant MZ; Ben Y
    Lab Chip; 2006 Nov; 6(11):1455-61. PubMed ID: 17066170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis.
    Ren Y; Liu W; Liu J; Tao Y; Guo Y; Jiang H
    Biomicrofluidics; 2016 Sep; 10(5):054103. PubMed ID: 27703589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis.
    Ren Y; Liu J; Liu W; Lang Q; Tao Y; Hu Q; Hou L; Jiang H
    Lab Chip; 2016 Aug; 16(15):2803-12. PubMed ID: 27354159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electro-osmosis of electrorheological fluids.
    Dhar J; Bandopadhyay A; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053001. PubMed ID: 24329345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.
    Gregersen MM; Andersen MB; Soni G; Meinhart C; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066316. PubMed ID: 19658603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation.
    Chen X; Ren Y; Liu W; Feng X; Jia Y; Tao Y; Jiang H
    Anal Chem; 2017 Sep; 89(17):9583-9592. PubMed ID: 28783330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of flow and droplets with an ultra-long-range linear concentration gradient.
    Dai B; Long Y; Wu J; Huang S; Zhao Y; Zheng L; Tao C; Guo S; Lin F; Fu Y; Zhang D; Zhuang S
    Lab Chip; 2021 Nov; 21(22):4390-4400. PubMed ID: 34704106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. dc Step response of induced-charge electro-osmosis between parallel electrodes at large voltages.
    Sugioka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013007. PubMed ID: 25122369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Experimental Study of 3D Electrode-Facilitated Particle Traffic Flow-Focusing Driven by Induced-Charge Electroosmosis.
    Jiang T; Tao Y; Jiang H; Liu W; Hu Y; Tang D
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30781666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Make it simple: long-term stable gradient generation in a microfluidic microdevice.
    Parittotokkaporn S; Dravid A; Bansal M; Aqrawe Z; Svirskis D; Suresh V; O'Carroll SJ
    Biomed Microdevices; 2019 Jul; 21(3):77. PubMed ID: 31346791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena.
    Sugioka H
    Adv Colloid Interface Sci; 2015 Dec; 226(Pt A):44-53. PubMed ID: 26482087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A convection-driven long-range linear gradient generator with dynamic control.
    Wang H; Chen CH; Xiang Z; Wang M; Lee C
    Lab Chip; 2015 Mar; 15(6):1445-50. PubMed ID: 25599134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields.
    Sugioka H
    Phys Rev E; 2016 Aug; 94(2-1):022609. PubMed ID: 27627362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system.
    Park S; Yossifon G
    Phys Rev E; 2016 Jun; 93(6):062614. PubMed ID: 27415327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis.
    Fu X; Mavrogiannis N; Doria S; Gagnon Z
    Lab Chip; 2015 Sep; 15(17):3600-8. PubMed ID: 26053965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling.
    Zhang L; Wang M
    J Colloid Interface Sci; 2017 Jan; 486():219-231. PubMed ID: 27716462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel particle separation method based on induced-charge electro-osmotic flow and polarizability of dielectric particles.
    Zhang F; Li D
    Electrophoresis; 2014 Oct; 35(20):2922-9. PubMed ID: 25043290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete experimental and theoretical characterization of nonlinear concentration gradient generator microfluidic device for analytical purposes.
    Buzzetti PHM; Taniguchi MM; de Souza Mendes N; Vicentino RC; de Oliveira JH; JĂșnior BPC; de Souza M; Monteiro JP; Girotto EM
    Mikrochim Acta; 2021 Dec; 189(1):11. PubMed ID: 34866167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A localized surface acoustic wave applied spatiotemporally controllable chemical gradient generator.
    Liang J; Chen K; Xia Y; Gui J; Wu Z; Cui H; Wu Z; Liu W; Zhao X; Guo S
    Biomicrofluidics; 2020 Mar; 14(2):024106. PubMed ID: 32231760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrolyte effect in induced charge electroosmosis.
    Feng H; Huang Y; Wong TN; Duan F
    Soft Matter; 2017 Jul; 13(28):4864-4870. PubMed ID: 28631789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.