These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20644751)

  • 1. Probing the selectivity of a nanostructured surface by xenon adsorption.
    Widmer R; Passerone D; Mattle T; Sachdev H; Gröning O
    Nanoscale; 2010 Apr; 2(4):502-8. PubMed ID: 20644751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of H2O, CO2 and Xe on Soft Surfaces.
    Stein O; Asscher M
    J Phys Chem B; 2008 Apr; 112(13):3955-62. PubMed ID: 18324804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced initial protein adsorption on engineered nanostructured cubic zirconia.
    Sabirianov RF; Rubinstein A; Namavar F
    Phys Chem Chem Phys; 2011 Apr; 13(14):6597-609. PubMed ID: 21380432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective ablation of Xe from silicon surfaces: molecular dynamics simulations and experimental laser patterning.
    Stein O; Lin Z; Zhigilei LV; Asscher M
    J Phys Chem A; 2011 Jun; 115(23):6250-9. PubMed ID: 21513277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal-organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)).
    Hoffmann HC; Assfour B; Epperlein F; Klein N; Paasch S; Senkovska I; Kaskel S; Seifert G; Brunner E
    J Am Chem Soc; 2011 Jun; 133(22):8681-90. PubMed ID: 21539397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular hydrophobic attraction and ion-specific effects studied by molecular dynamics.
    Horinek D; Serr A; Bonthuis DJ; Boström M; Kunz W; Netz RR
    Langmuir; 2008 Feb; 24(4):1271-83. PubMed ID: 18220430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modeling of oligopeptide adsorption onto functionalized quartz surfaces.
    Forte G; Grassi A; Marletta G
    J Phys Chem B; 2007 Sep; 111(38):11237-43. PubMed ID: 17803297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of an antimicrobial peptide on self-assembled monolayers by molecular dynamics simulation.
    Soliman W; Bhattacharjee S; Kaur K
    J Phys Chem B; 2010 Sep; 114(34):11292-302. PubMed ID: 20690694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water structure at solid surfaces and its implications for biomolecule adsorption.
    Jena KC; Hore DK
    Phys Chem Chem Phys; 2010 Nov; 12(43):14383-404. PubMed ID: 20714584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo modeling of chiral adsorption on nanostructured chiral surfaces and slit pores.
    Szabelski P; Panczyk T; Drach M
    Langmuir; 2008 Nov; 24(22):12972-80. PubMed ID: 18942862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface.
    Such B; Trevethan T; Glatzel T; Kawai S; Zimmerli L; Meyer E; Shluger AL; Amijs CH; de Mendoza P; Echavarren AM
    ACS Nano; 2010 Jun; 4(6):3429-39. PubMed ID: 20499857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions.
    Raffaini G; Ganazzoli F
    J Appl Biomater Biomech; 2010; 8(3):135-45. PubMed ID: 21337304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations.
    Wang L; Liang H; Wu J
    J Chem Phys; 2010 Jul; 133(4):044906. PubMed ID: 20687685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces.
    Xie Y; Zhou J; Jiang S
    J Chem Phys; 2010 Feb; 132(6):065101. PubMed ID: 20151757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the interaction of the porphyrin macrocycle to reactive metal substrates: structure, bonding, and adatom capture.
    Dyer MS; Robin A; Haq S; Raval R; Persson M; Klimes J
    ACS Nano; 2011 Mar; 5(3):1831-8. PubMed ID: 21322530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of surface structure evolution in colloidal adsorption: charge patterning and polydispersity.
    Brewer DD; Tsapatsis M; Kumar S
    J Chem Phys; 2010 Jul; 133(3):034709. PubMed ID: 20649352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic and dispersion interactions during protein adsorption on topographic nanostructures.
    Elter P; Lange R; Beck U
    Langmuir; 2011 Jul; 27(14):8767-75. PubMed ID: 21678937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces.
    Zhou J; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2004 Jul; 121(2):1050-7. PubMed ID: 15260639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.