BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20644760)

  • 21. Core-shell structure of degradable, thermosensitive polymeric micelles studied by small-angle neutron scattering.
    Ramzi A; Rijcken CJ; Veldhuis TF; Schwahn D; Hennink WE; van Nostrum CF
    J Phys Chem B; 2008 Jan; 112(3):784-92. PubMed ID: 18166030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-aggregation of gel forming PEG-PLA star block copolymers in water.
    Calucci L; Forte C; Buwalda SJ; Dijkstra PJ; Feijen J
    Langmuir; 2010 Aug; 26(15):12890-6. PubMed ID: 20666421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations.
    Li Y; Qi XR; Maitani Y; Nagai T
    Nanotechnology; 2009 Feb; 20(5):055106. PubMed ID: 19417337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of highly dispersible and tumor-accumulative, iron oxide nanoparticles Multi-point anchoring of PEG-b-poly(4-vinylbenzylphosphonate) improves performance significantly.
    Ujiie K; Kanayama N; Asai K; Kishimoto M; Ohara Y; Akashi Y; Yamada K; Hashimoto S; Oda T; Ohkohchi N; Yanagihara H; Kita E; Yamaguchi M; Fujii H; Nagasaki Y
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):771-8. PubMed ID: 21890332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels.
    Shah NM; Pool MD; Metters AT
    Biomacromolecules; 2006 Nov; 7(11):3171-7. PubMed ID: 17096548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier.
    Yasugi K; Nagasaki Y; Kato M; Kataoka K
    J Control Release; 1999 Nov; 62(1-2):89-100. PubMed ID: 10518640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness.
    Ishihara T; Kubota T; Choi T; Takahashi M; Ayano E; Kanazawa H; Higaki M
    Int J Pharm; 2009 Jun; 375(1-2):148-54. PubMed ID: 19481700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel.
    Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amphiphilic comblike polymers enhance the colloidal stability of Fe(3)O(4) nanoparticles.
    Kim M; Jung J; Lee J; Na K; Park S; Hyun J
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):236-40. PubMed ID: 19939645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of a PLA-PEG block copolymer using a PLA derivative with a formyl terminal group and its application to nanoparticulate formulation.
    Sasatsu M; Onishi H; Machida Y
    Int J Pharm; 2005 Apr; 294(1-2):233-45. PubMed ID: 15814247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.
    Xu H; Yan F; Monson EE; Kopelman R
    J Biomed Mater Res A; 2003 Sep; 66(4):870-9. PubMed ID: 12926040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of pre-mixed copolymers with different PEG lengths.
    Abebe DG; Fujiwara T
    Biomacromolecules; 2012 Jun; 13(6):1828-36. PubMed ID: 22537225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization.
    Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J
    J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperbranched amphiphilic polymer with folate mediated targeting property.
    Zhang L; Hu CH; Cheng SX; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):427-33. PubMed ID: 20537873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PLA-based biodegradable and tunable soft elastomers for biomedical applications.
    Harrane A; Leroy A; Nouailhas H; Garric X; Coudane J; Nottelet B
    Biomed Mater; 2011 Dec; 6(6):065006. PubMed ID: 22101003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization.
    Gong C; Wei X; Wang X; Wang Y; Guo G; Mao Y; Luo F; Qian Z
    Nanotechnology; 2010 May; 21(21):215103. PubMed ID: 20431208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier.
    Jie P; Venkatraman SS; Min F; Freddy BY; Huat GL
    J Control Release; 2005 Dec; 110(1):20-33. PubMed ID: 16289421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers.
    Frounchi M; Shamshiri S
    J Biomed Mater Res A; 2015 May; 103(5):1893-8. PubMed ID: 25203941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monolayer-protected gold nanoparticles by the self-assembly of micellar poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymer.
    Azzam T; Eisenberg A
    Langmuir; 2007 Feb; 23(4):2126-32. PubMed ID: 17279704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PEG-PLA block copolymer as potential drug carrier: preparation and characterization.
    Ben-Shabat S; Kumar N; Domb AJ
    Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.