BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 20644783)

  • 1. Flower-like TiO2 nanostructures with exposed {001} facets: facile synthesis and enhanced photocatalysis.
    Liu M; Piao L; Lu W; Ju S; Zhao L; Zhou C; Li H; Wang W
    Nanoscale; 2010 Jul; 2(7):1115-7. PubMed ID: 20644783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light.
    Hu S; Wang A; Li X; Wang Y; Löwe H
    Chem Asian J; 2010 May; 5(5):1171-7. PubMed ID: 20379993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure.
    Zhang J; Xiao X; Nan J
    J Hazard Mater; 2010 Apr; 176(1-3):617-22. PubMed ID: 20004517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of hierarchical rose bridal bouquet- and humming-top-like TiO2 nanostructures and their shape-dependent degradation efficiency of dye.
    Nguyen-Phan TD; Kim EJ; Hahn SH; Kim WJ; Shin EW
    J Colloid Interface Sci; 2011 Apr; 356(1):138-44. PubMed ID: 21257177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst.
    Virkutyte J; Baruwati B; Varma RS
    Nanoscale; 2010 Jul; 2(7):1109-11. PubMed ID: 20648334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis.
    Pearson A; Zheng H; Kalantar-Zadeh K; Bhargava SK; Bansal V
    Langmuir; 2012 Oct; 28(40):14470-5. PubMed ID: 22989080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue.
    Li Z; Shen W; He W; Zu X
    J Hazard Mater; 2008 Jul; 155(3):590-4. PubMed ID: 18179869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor.
    Hu K; Xiao X; Cao X; Hao R; Zuo X; Zhang X; Nan J
    J Hazard Mater; 2011 Aug; 192(2):514-20. PubMed ID: 21676544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatase TiO(2) single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis.
    Liu M; Piao L; Zhao L; Ju S; Yan Z; He T; Zhou C; Wang W
    Chem Commun (Camb); 2010 Mar; 46(10):1664-6. PubMed ID: 20177609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic synthesis and photocatalytic characterization of H3PW12O40/TiO2 (anatase).
    Lee J; Dong X; Dong X
    Ultrason Sonochem; 2010 Apr; 17(4):649-53. PubMed ID: 20171134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic ozonation of dimethyl phthalate with TiO2 prepared by a hydrothermal method.
    Jing Y; Li L; Zhang Q; Lu P; Liu P; Lü X
    J Hazard Mater; 2011 May; 189(1-2):40-7. PubMed ID: 21376460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream.
    Ling CM; Mohamed AR; Bhatia S
    Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.
    Abou-Gamra ZM; Ahmed MA
    J Photochem Photobiol B; 2016 Jul; 160():134-41. PubMed ID: 27107333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance.
    Li Q; Shang JK
    Environ Sci Technol; 2010 May; 44(9):3493-9. PubMed ID: 20387812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and mechanistic analysis of the visible light response of cerium and nitrogen co-doped TiO2 nano-photocatalyst synthesized using a one-step technique.
    Yu T; Tan X; Zhao L
    J Hazard Mater; 2010 Apr; 176(1-3):829-35. PubMed ID: 20005630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.
    Shanmugam M; Alsalme A; Alghamdi A; Jayavel R
    J Photochem Photobiol B; 2016 Oct; 163():216-23. PubMed ID: 27588719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies.
    Liu B; Wang X; Cai G; Wen L; Song Y; Zhao X
    J Hazard Mater; 2009 Sep; 169(1-3):1112-8. PubMed ID: 19500906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titania-coated metal nanostructures.
    Seh ZW; Liu S; Han MY
    Chem Asian J; 2012 Oct; 7(10):2174-84. PubMed ID: 22707415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of TiO₂ hierarchical nanostructures from nanocrystals and their photocatalytic properties.
    Zhu T; Li J; Wu Q
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3448-53. PubMed ID: 21800846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthetic approach for Ti3+ self-doped TiO(2-x) nanoparticles with efficient visible light photocatalytic activity.
    Liu X; Gao S; Xu H; Lou Z; Wang W; Huang B; Dai Y
    Nanoscale; 2013 Mar; 5(5):1870-5. PubMed ID: 23348572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.