These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20644847)

  • 1. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties?
    Pumera M; Miyahara Y
    Nanoscale; 2009 Nov; 1(2):260-5. PubMed ID: 20644847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes.
    Pumera M; Iwai H
    Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes.
    Ambrosi A; Pumera M
    Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-active nickel in carbon nanotubes and its direct determination.
    Ambrosi A; Pumera M
    Chemistry; 2012 Mar; 18(11):3338-44. PubMed ID: 22307929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes.
    Kolodiazhnyi T; Pumera M
    Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct determination of bioavailable molybdenum in carbon nanotubes.
    Giovanni M; Ambrosi A; Pumera M
    Chemistry; 2011 Feb; 17(6):1806-10. PubMed ID: 21274931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations.
    Jones CP; Jurkschat K; Crossley A; Compton RG; Riehl BL; Banks CE
    Langmuir; 2007 Aug; 23(18):9501-4. PubMed ID: 17655265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic nickel-iron impurities within single-walled carbon nanotubes exhibit redox activity towards the oxidation of amino acids.
    Pumera M; Iwai H; Miyahara Y
    Chemphyschem; 2009 Aug; 10(11):1770-3. PubMed ID: 19603449
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine.
    Han KN; Li CA; Bui MP; Pham XH; Seong GH
    Chem Commun (Camb); 2011 Jan; 47(3):938-40. PubMed ID: 21076760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin B(12) incorporated with multiwalled carbon nanotube composite film for the determination of hydrazine.
    Umasankar Y; Huang TY; Chen SM
    Anal Biochem; 2011 Jan; 408(2):297-303. PubMed ID: 20920459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide.
    Miyata Y; Maniwa Y; Kataura H
    J Phys Chem B; 2006 Jan; 110(1):25-9. PubMed ID: 16471491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impurities within carbon nanotubes govern the electrochemical oxidation of substituted hydrazines.
    Stuart EJ; Pumera M
    Phys Chem Chem Phys; 2011 Jun; 13(22):10818-22. PubMed ID: 21556440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.
    Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M
    Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication.
    Toh RJ; Ambrosi A; Pumera M
    Chemistry; 2012 Sep; 18(37):11593-6. PubMed ID: 22865345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal transducers and enzyme cofactors are susceptible to oxidation by nanographite impurities in carbon nanotube materials.
    J E Stuart E; Pumera M
    Chemistry; 2011 May; 17(20):5544-8. PubMed ID: 21491519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors.
    Wang J; Musameh M; Lin Y
    J Am Chem Soc; 2003 Mar; 125(9):2408-9. PubMed ID: 12603125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode.
    Zhao W; Wang H; Qin X; Wang X; Zhao Z; Miao Z; Chen L; Shan M; Fang Y; Chen Q
    Talanta; 2009 Dec; 80(2):1029-33. PubMed ID: 19836592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-washing does not leave single walled carbon nanotubes iron-free.
    Jurkschat K; Ji X; Crossley A; Compton RG; Banks CE
    Analyst; 2007 Jan; 132(1):21-3. PubMed ID: 17180174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Biotechnol Adv; 2011; 29(2):169-88. PubMed ID: 21034805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.