These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20644851)

  • 1. One-pot formation of SnO2 hollow nanospheres and alpha-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties.
    Chen JS; Li CM; Zhou WW; Yan QY; Archer LA; Lou XW
    Nanoscale; 2009 Nov; 1(2):280-5. PubMed ID: 20644851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors.
    Ding S; Chen JS; Qi G; Duan X; Wang Z; Giannelis EP; Archer LA; Lou XW
    J Am Chem Soc; 2011 Jan; 133(1):21-3. PubMed ID: 21142028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step synthesis of SnO2 and TiO2 hollow nanostructures with various shapes and their enhanced lithium storage properties.
    Wang Z; Wang ZC; Madhavi S; Lou XW
    Chemistry; 2012 Jun; 18(24):7561-7. PubMed ID: 22539266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO₂ and Hollow SnO/SnO₂ and SnO₂ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties.
    Cho JS; Kang YC
    Small; 2015 Sep; 11(36):4673-81. PubMed ID: 26058833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres: a template- and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst.
    Wu W; Zhang S; Zhou J; Xiao X; Ren F; Jiang C
    Chemistry; 2011 Aug; 17(35):9708-19. PubMed ID: 21735499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties.
    Wang B; Chen JS; Wu HB; Wang Z; Lou XW
    J Am Chem Soc; 2011 Nov; 133(43):17146-8. PubMed ID: 21977903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Novel Si@SnO2 Core-Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage.
    Zhou ZW; Liu YT; Xie XM; Ye XY
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7092-100. PubMed ID: 26927734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries.
    Yan Y; Du F; Shen X; Ji Z; Zhou H; Zhu G
    Dalton Trans; 2014 Dec; 43(46):17544-50. PubMed ID: 25347762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stable SnO
    Choi J; Kim WS; Hong SH
    Nanoscale; 2018 Mar; 10(9):4370-4376. PubMed ID: 29446430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General one-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties.
    Li D; Qin Q; Duan X; Yang J; Guo W; Zheng W
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9095-100. PubMed ID: 23968356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods.
    Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL
    Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion.
    Cho JS; Kang YC
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3800-9. PubMed ID: 26799404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery.
    Du N; Zhang H; Chen J; Sun J; Chen B; Yang D
    J Phys Chem B; 2008 Nov; 112(47):14836-42. PubMed ID: 18950221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of uniform carbon-coated MoO(2) nanospheres for high-rate reversible lithium storage.
    Wang Z; Chen JS; Zhu T; Madhavi S; Lou XW
    Chem Commun (Camb); 2010 Oct; 46(37):6906-8. PubMed ID: 20730195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity.
    Zeng W; Zheng F; Li R; Zhan Y; Li Y; Liu J
    Nanoscale; 2012 Apr; 4(8):2760-5. PubMed ID: 22422051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium-ion storage performances of sunflower-like and nano-sized hollow SnO
    Park GD; Kim JH; Kang YC
    Nanoscale; 2018 Jul; 10(28):13531-13538. PubMed ID: 29974113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of core-shell α-Fe(2)O(3)@ Li(4)Ti(5)O(12) composite and its application in the lithium ion batteries.
    Chen M; Li W; Shen X; Diao G
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4514-23. PubMed ID: 24598727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow hematite nanosphere/carbon nanotube composite: mass production and its high-rate lithium storage properties.
    Chou SL; Wang JZ; Chen ZX; Liu HK; Dou SX
    Nanotechnology; 2011 Jul; 22(26):265401. PubMed ID: 21576778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clewlike ZnV2O4 hollow spheres: nonaqueous sol-gel synthesis, formation mechanism, and lithium storage properties.
    Xiao L; Zhao Y; Yin J; Zhang L
    Chemistry; 2009 Sep; 15(37):9442-50. PubMed ID: 19672904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-organic-frameworks-derived general formation of hollow structures with high complexity.
    Zhang L; Wu HB; Lou XW
    J Am Chem Soc; 2013 Jul; 135(29):10664-72. PubMed ID: 23805894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.