These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 20644982)
21. Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds. Xiao X; Liu R; Huang Q J Mater Sci Mater Med; 2008 Nov; 19(11):3429-35. PubMed ID: 18574674 [TBL] [Abstract][Full Text] [Related]
22. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Han J; Zhou Z; Yin R; Yang D; Nie J Int J Biol Macromol; 2010 Mar; 46(2):199-205. PubMed ID: 19941890 [TBL] [Abstract][Full Text] [Related]
23. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
24. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Serra IR; Fradique R; Vallejo MC; Correia TR; Miguel SP; Correia IJ Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():592-604. PubMed ID: 26117793 [TBL] [Abstract][Full Text] [Related]
25. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
26. Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds. Tunçay EÖ; Demirtaş TT; Gümüşderelioğlu M J Trace Elem Med Biol; 2017 Mar; 40():72-81. PubMed ID: 28159225 [TBL] [Abstract][Full Text] [Related]
27. Dynamics of the natural genesis of β-TCP/HAp phases in postnatal fishbones towards gold standard biocomposites for bone regeneration. Weinand WR; Cruz JA; Medina AN; Lima WM; Sato F; da Silva Palacios R; Gibin MS; Volnistem EA; Rosso JM; Santos IA; Rohling JH; Bento AC; Baesso ML; da Silva CG; Dos Santos EX; Scatolim DB; Gavazzoni A; Queiroz AF; Companhoni MVP; Nakamura TU; Hernandes L; Bonadio TGM; Miranda LCM Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121407. PubMed ID: 35636138 [TBL] [Abstract][Full Text] [Related]
28. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
29. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Maji K; Dasgupta S; Pramanik K; Bissoyi A Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100 [TBL] [Abstract][Full Text] [Related]
30. Fabrication, characterization and cell cultures on a novel composite chitosan-nano-hydroxyapatite scaffold. Palazzo B; Gallo A; Casillo A; Nitti P; Ambrosio L; Piconi C Int J Immunopathol Pharmacol; 2011; 24(1 Suppl 2):73-8. PubMed ID: 21669142 [TBL] [Abstract][Full Text] [Related]
31. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds. Kim YH; Anirban JM; Song HY; Seo HS; Lee BT J Biomater Appl; 2011 Feb; 25(6):539-58. PubMed ID: 20207781 [TBL] [Abstract][Full Text] [Related]
32. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Wen Z; Zhang L; Chen C; Liu Y; Wu C; Dai C Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1022-31. PubMed ID: 23827538 [TBL] [Abstract][Full Text] [Related]
33. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Sundaram J; Durance TD; Wang R Acta Biomater; 2008 Jul; 4(4):932-42. PubMed ID: 18325862 [TBL] [Abstract][Full Text] [Related]
34. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263 [TBL] [Abstract][Full Text] [Related]
35. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related]
36. Chitosan fibers modified with HAp/β-TCP nanoparticles. Wawro D; Pighinelli L Int J Mol Sci; 2011; 12(11):7286-300. PubMed ID: 22174598 [TBL] [Abstract][Full Text] [Related]
37. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp. Wang JL; Chen Q; Du BB; Cao L; Lin H; Fan ZY; Dong J Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():60-69. PubMed ID: 29549950 [TBL] [Abstract][Full Text] [Related]
38. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic" electroless coprecipitation route. Oliveira JM; Costa SA; Leonor IB; Malafaya PB; Mano JF; Reis RL J Biomed Mater Res A; 2009 Feb; 88(2):470-80. PubMed ID: 18306322 [TBL] [Abstract][Full Text] [Related]
39. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Shavandi A; Bekhit Ael-D; Ali MA; Sun Z; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():481-93. PubMed ID: 26249618 [TBL] [Abstract][Full Text] [Related]
40. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]