These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 20645298)
1. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis. Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298 [TBL] [Abstract][Full Text] [Related]
2. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations. Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137 [TBL] [Abstract][Full Text] [Related]
3. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452 [TBL] [Abstract][Full Text] [Related]
4. Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Balasubramanian G; Puri IK; Böhm MC; Leroy F Nanoscale; 2011 Sep; 3(9):3714-20. PubMed ID: 21792432 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations of thermal transport in porous nanotube network structures. Varshney V; Roy AK; Froudakis G; Farmer BL Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788 [TBL] [Abstract][Full Text] [Related]
6. Electronic structure and transport of a carbon chain between graphene nanoribbon leads. Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear thermal conductance in single-wall carbon nanotubes: negative differential thermal resistance. Ai BQ; An M; Zhong WR J Chem Phys; 2013 Jan; 138(3):034708. PubMed ID: 23343294 [TBL] [Abstract][Full Text] [Related]
11. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes. Gao B; Jiang J; Wu Z; Luo Y J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072 [TBL] [Abstract][Full Text] [Related]
12. Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper. Yang K; He J; Puneet P; Su Z; Skove MJ; Gaillard J; Tritt TM; Rao AM J Phys Condens Matter; 2010 Aug; 22(33):334215. PubMed ID: 21386505 [TBL] [Abstract][Full Text] [Related]
13. Anisotropy of the thermal conductivity in a crystalline polymer: reverse nonequilibrium molecular dynamics simulation of the delta phase of syndiotactic polystyrene. Rossinsky E; Müller-Plathe F J Chem Phys; 2009 Apr; 130(13):134905. PubMed ID: 19355778 [TBL] [Abstract][Full Text] [Related]
14. Influence of longitudinal isotope substitution on the thermal conductivity of carbon nanotubes: results of nonequilibrium molecular dynamics and local density functional calculations. Leroy F; Schulte J; Balasubramanian G; Böhm MC J Chem Phys; 2014 Apr; 140(14):144704. PubMed ID: 24735310 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations. Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447 [TBL] [Abstract][Full Text] [Related]
16. Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations. Neyts EC; Shibuta Y; van Duin AC; Bogaerts A ACS Nano; 2010 Nov; 4(11):6665-72. PubMed ID: 20939511 [TBL] [Abstract][Full Text] [Related]
17. Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube. Zhou Z; Steigerwald M; Hybertsen M; Brus L; Friesner RA J Am Chem Soc; 2004 Mar; 126(11):3597-607. PubMed ID: 15025489 [TBL] [Abstract][Full Text] [Related]
19. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes. Skandani AA; Zeineldin R; Al-Haik M Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729 [TBL] [Abstract][Full Text] [Related]
20. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Pradhan NR; Duan H; Liang J; Iannacchione GS Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]