BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 20645298)

  • 1. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC
    J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F
    J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations.
    Balasubramanian G; Puri IK; Böhm MC; Leroy F
    Nanoscale; 2011 Sep; 3(9):3714-20. PubMed ID: 21792432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Müller-Plathe F; Böhm MC
    J Chem Phys; 2011 Nov; 135(18):184905. PubMed ID: 22088079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-cap effects on vibrational structures of finite-length carbon nanotubes.
    Yumura T; Nozaki D; Bandow S; Yoshizawa K; Iijima S
    J Am Chem Soc; 2005 Aug; 127(33):11769-76. PubMed ID: 16104755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST; Cahill DG; Shenogin S; Xue L; Ozisik R; Barone P; Usrey M; Strano MS; Siddons G; Shim M; Keblinski P
    Nat Mater; 2003 Nov; 2(11):731-4. PubMed ID: 14556001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear thermal conductance in single-wall carbon nanotubes: negative differential thermal resistance.
    Ai BQ; An M; Zhong WR
    J Chem Phys; 2013 Jan; 138(3):034708. PubMed ID: 23343294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper.
    Yang K; He J; Puneet P; Su Z; Skove MJ; Gaillard J; Tritt TM; Rao AM
    J Phys Condens Matter; 2010 Aug; 22(33):334215. PubMed ID: 21386505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropy of the thermal conductivity in a crystalline polymer: reverse nonequilibrium molecular dynamics simulation of the delta phase of syndiotactic polystyrene.
    Rossinsky E; Müller-Plathe F
    J Chem Phys; 2009 Apr; 130(13):134905. PubMed ID: 19355778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of longitudinal isotope substitution on the thermal conductivity of carbon nanotubes: results of nonequilibrium molecular dynamics and local density functional calculations.
    Leroy F; Schulte J; Balasubramanian G; Böhm MC
    J Chem Phys; 2014 Apr; 140(14):144704. PubMed ID: 24735310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations.
    Neyts EC; Shibuta Y; van Duin AC; Bogaerts A
    ACS Nano; 2010 Nov; 4(11):6665-72. PubMed ID: 20939511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube.
    Zhou Z; Steigerwald M; Hybertsen M; Brus L; Friesner RA
    J Am Chem Soc; 2004 Mar; 126(11):3597-607. PubMed ID: 15025489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes.
    Pradhan NR; Duan H; Liang J; Iannacchione GS
    Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.