These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2064592)

  • 61. Dipeptide transport in brush-border membrane vesicles (BBMV) prepared from human full-term placentae.
    Meredith D; Laynes RW
    Placenta; 1996; 17(2-3):173-9. PubMed ID: 8730888
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transport of glycine in the brush border and basal cell membrane vesicles of the human term placenta.
    Anand RJ; Kanwar U; Sanyal SN
    Biochem Mol Biol Int; 1996 Feb; 38(1):21-30. PubMed ID: 8932515
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline.
    Ganapathy V; Leibach FH
    J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sulfate transport in brush border membrane vesicles prepared from human placental syncytiotrophoblast.
    Cole DE
    Biochem Biophys Res Commun; 1984 Aug; 123(1):223-9. PubMed ID: 6477580
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transport of amino acids by the human placenta: predicted effects thereon of maternal hyperphenylalaninaemia.
    Kudo Y; Boyd CA
    J Inherit Metab Dis; 1990; 13(4):617-26. PubMed ID: 2122124
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 67. p-aminohippurate uptake by syncytial microvillous membrane vesicles of human term placenta.
    Van der Aa EM; Meuwsen IJ; Boersen AC; Wouterse AC; Copius Peereboom-Stegeman JH; Russel FG
    Placenta; 1994 Apr; 15(3):279-89. PubMed ID: 8066051
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization of tryptophan transport in human placental brush-border membrane vesicles.
    Ganapathy ME; Leibach FH; Mahesh VB; Howard JC; Devoe LD; Ganapathy V
    Biochem J; 1986 Aug; 238(1):201-8. PubMed ID: 3800932
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characteristics of L-lactic acid transport in basal membrane vesicles of human placental syncytiotrophoblast.
    Inuyama M; Ushigome F; Emoto A; Koyabu N; Satoh S; Tsukimori K; Nakano H; Ohtani H; Sawada Y
    Am J Physiol Cell Physiol; 2002 Sep; 283(3):C822-30. PubMed ID: 12176739
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Heterogeneity of L-alanine transport systems in brush-border membrane vesicles from rat placenta during late gestation.
    Alonso-Torre SR; Serrano MA; Medina JM; Alvarado F
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):47-53. PubMed ID: 1445280
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sodium entry into human placental microvillous (maternal) plasma membrane vesicles.
    Chipperfield AR; Langridge-Smith JE; Steele LW
    Q J Exp Physiol; 1988 May; 73(3):399-411. PubMed ID: 3399622
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Na+ + Cl- -gradient-driven, high-affinity, uphill transport of taurine in human placental brush-border membrane vesicles.
    Miyamoto Y; Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V
    FEBS Lett; 1988 Apr; 231(1):263-7. PubMed ID: 3360130
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of acidosis on glutamine transport by isolated rat renal brush-border and basolateral-membrane vesicles.
    Foreman JW; Reynolds RA; Ginkinger K; Segal S
    Biochem J; 1983 Jun; 212(3):713-20. PubMed ID: 6882392
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kinetic analysis of P-glycoprotein-mediated transport by using normal human placental brush-border membrane vesicles.
    Ushigome F; Koyabu N; Satoh S; Tsukimori K; Nakano H; Nakamura T; Uchiumi T; Kuwano M; Ohtani H; Sawada Y
    Pharm Res; 2003 Jan; 20(1):38-44. PubMed ID: 12608534
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sodium-gradient-driven, high-affinity, uphill transport of succinate in human placental brush-border membrane vesicles.
    Ganapathy V; Ganapathy ME; Tiruppathi C; Miyamoto Y; Mahesh VB; Leibach FH
    Biochem J; 1988 Jan; 249(1):179-84. PubMed ID: 3342005
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dipeptide transport in brush-border membrane vesicles isolated from normal term human placenta.
    Ganapathy ME; Mahesh VB; Devoe LD; Leibach FH; Ganapathy V
    Am J Obstet Gynecol; 1985 Sep; 153(1):83-6. PubMed ID: 4037005
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [The role of glutathione on placental amino acid transport (using microvillous membrane vesicles)].
    Iioka H; Moriyama I; Itoh K; Hino K; Okamura Y; Itani Y; Katoh Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Dec; 39(12):2133-6. PubMed ID: 3123580
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Taurine transport by microvillous membrane vesicles and the perfused cotyledon of the human placenta.
    Karl PI; Fisher SE
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C443-51. PubMed ID: 2316633
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes.
    Hirano T; Iseki K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K
    J Pharm Pharmacol; 1994 Aug; 46(8):676-9. PubMed ID: 7815283
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characteristics of tripeptide transport in human jejunal brush-border membrane vesicles.
    Wilson D; Barry JA; Ramaswamy K
    Biochim Biophys Acta; 1989 Nov; 986(1):123-9. PubMed ID: 2819090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.