These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 20647376)

  • 1. Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis.
    Kaundal R; Saini R; Zhao PX
    Plant Physiol; 2010 Sep; 154(1):36-54. PubMed ID: 20647376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information.
    Kaundal R; Raghava GP
    Proteomics; 2009 May; 9(9):2324-42. PubMed ID: 19402042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses.
    Lingner T; Kataya AR; Antonicelli GE; Benichou A; Nilssen K; Chen XY; Siemsen T; Morgenstern B; Meinicke P; Reumann S
    Plant Cell; 2011 Apr; 23(4):1556-72. PubMed ID: 21487095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2006 Aug; 347(1):150-7. PubMed ID: 16808903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking cellular sorting improves prediction of subcellular localization.
    Nair R; Rost B
    J Mol Biol; 2005 Apr; 348(1):85-100. PubMed ID: 15808855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein subcellular locations using fuzzy k-NN method.
    Huang Y; Li Y
    Bioinformatics; 2004 Jan; 20(1):21-8. PubMed ID: 14693804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.
    Zybailov B; Rutschow H; Friso G; Rudella A; Emanuelsson O; Sun Q; van Wijk KJ
    PLoS One; 2008 Apr; 3(4):e1994. PubMed ID: 18431481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PRIN: a predicted rice interactome network.
    Gu H; Zhu P; Jiao Y; Meng Y; Chen M
    BMC Bioinformatics; 2011 May; 12():161. PubMed ID: 21575196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.
    Narsai R; Devenish J; Castleden I; Narsai K; Xu L; Shou H; Whelan J
    Plant J; 2013 Dec; 76(6):1057-73. PubMed ID: 24147765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis.
    Chowdhary G; Kataya AR; Lingner T; Reumann S
    BMC Plant Biol; 2012 Aug; 12():142. PubMed ID: 22882975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment.
    Bouziane H; Chouarfia A
    J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eSLDB: eukaryotic subcellular localization database.
    Pierleoni A; Martelli PL; Fariselli P; Casadio R
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D208-12. PubMed ID: 17108361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome.
    Hooper CM; Tanz SK; Castleden IR; Vacher MA; Small ID; Millar AH
    Bioinformatics; 2014 Dec; 30(23):3356-64. PubMed ID: 25150248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes.
    Lam PV; Goldman R; Karagiannis K; Narsule T; Simonyan V; Soika V; Mazumder R
    Genomics Proteomics Bioinformatics; 2013 Apr; 11(2):96-104. PubMed ID: 23459159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates.
    Zhang SW; Liu YF; Yu Y; Zhang TH; Fan XN
    Anal Biochem; 2014 Mar; 449():164-71. PubMed ID: 24361712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis.
    Heazlewood JL; Tonti-Filippini J; Verboom RE; Millar AH
    Plant Physiol; 2005 Oct; 139(2):598-609. PubMed ID: 16219920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins.
    Shen HB; Chou KC
    Protein Eng Des Sel; 2007 Jan; 20(1):39-46. PubMed ID: 17244638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in
    Li X; Yuan Z; Chen Y
    Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prediction of organelle-targeting peptides in eukaryotic proteins with Grammatical-Restrained Hidden Conditional Random Fields.
    Indio V; Martelli PL; Savojardo C; Fariselli P; Casadio R
    Bioinformatics; 2013 Apr; 29(8):981-8. PubMed ID: 23428638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validating subcellular localization prediction tools with mycobacterial proteins.
    Restrepo-Montoya D; Vizcaíno C; Niño LF; Ocampo M; Patarroyo ME; Patarroyo MA
    BMC Bioinformatics; 2009 May; 10():134. PubMed ID: 19422713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.