These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2064754)

  • 1. Interfacial dehydration by alcohols: hydrogen bonding of alcohols to phospholipids.
    Chiou JS; Kuo CC; Lin SH; Kamaya H; Ueda I
    Alcohol; 1991; 8(2):143-50. PubMed ID: 2064754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alcohols dehydrate lipid membranes: an infrared study on hydrogen bonding.
    Chiou JS; Krishna PR; Kamaya H; Ueda I
    Biochim Biophys Acta; 1992 Oct; 1110(2):225-33. PubMed ID: 1390852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR evidence for alcohol binding and dehydration in phospholipid and ganglioside micelles.
    Yurttaş L; Dale BE; Klemm WR
    Alcohol Clin Exp Res; 1992 Oct; 16(5):863-9. PubMed ID: 1443422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anesthesia cutoff phenomenon: interfacial hydrogen bonding.
    Chiou JS; Ma SM; Kamaya H; Ueda I
    Science; 1990 May; 248(4955):583-5. PubMed ID: 2159183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition.
    Tsai YS; Ma SM; Nishimura S; Ueda I
    Biochim Biophys Acta; 1990 Feb; 1022(2):245-50. PubMed ID: 2306457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C-NMR and spectrophotometric studies of alcohol-lipid interactions.
    Herold LL; Rowe ES; Khalifah RG
    Chem Phys Lipids; 1987 Apr; 43(3):215-25. PubMed ID: 3621384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared studies on phospholipid hydration: phosphate-oriented hydrogen bonding and its attenuation by volatile anesthetics.
    Tsai YS; Ma SM; Kamaya H; Ueda I
    Mol Pharmacol; 1987 Jun; 31(6):623-30. PubMed ID: 3600607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion.
    Olson ES; Sharma RK; Aulich TR
    Appl Biochem Biotechnol; 2004; 113-116():913-32. PubMed ID: 15054242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilic binding site of ethanol in reversed lipid micelles.
    Klemm WR; Williams HJ
    Alcohol; 1996; 13(2):133-8. PubMed ID: 8814646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of high external pressure on DPPC-cholesterol multilamellar vesicles: a pressure-tuning Fourier transform infrared spectroscopy study.
    Reis O; Winter R; Zerda TW
    Biochim Biophys Acta; 1996 Feb; 1279(1):5-16. PubMed ID: 8624361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near IR overtone spectral investigations of cyclohexanol using local mode model--evidence for variation of anharmonicity with concentration due to hydrogen bonding.
    John U; Nair KP
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Sep; 61(11-12):2555-9. PubMed ID: 16043048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of butanol isomers on dipalmitoylphosphatidylcholine bilayer membranes.
    Reeves MD; Schawel AK; Wang W; Dea P
    Biophys Chem; 2007 Jun; 128(1):13-8. PubMed ID: 17368700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How alcohol chain-length and concentration modulate hydrogen bond formation in a lipid bilayer.
    Dickey AN; Faller R
    Biophys J; 2007 Apr; 92(7):2366-76. PubMed ID: 17218462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles.
    Zeng J; Smith KE; Chong PL
    Biophys J; 1993 Oct; 65(4):1404-14. PubMed ID: 8274634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and electron-induced decomposition of 2-butanol on Pt(111).
    Hu X; Rosenberg RA; Trenary M
    J Phys Chem A; 2011 Jun; 115(23):5785-93. PubMed ID: 21261270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular interactions between sphingomyelin and phosphatidylcholine in phospholipid vesicles.
    Villalaín J; Ortiz A; Gómez-Fernández JC
    Biochim Biophys Acta; 1988 Jun; 941(1):55-62. PubMed ID: 3370212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titration calorimetric and differential scanning calorimetric studies of the interactions of n-butanol with several phases of dipalmitoylphosphatidylcholine.
    Zhang F; Rowe ES
    Biochemistry; 1992 Feb; 31(7):2005-11. PubMed ID: 1536843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular interaction studies of acrylic esters with 1-alcohols.
    Sivagurunathan P; Dharmalingam K; Ramachandran K
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(1):127-9. PubMed ID: 16531102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biphasic effects of alcohols on the phase transition of poly(L-lysine) between alpha-helix and beta-sheet conformations.
    Shibata A; Yamamoto M; Yamashita T; Chiou JS; Kamaya H; Ueda I
    Biochemistry; 1992 Jun; 31(25):5728-33. PubMed ID: 1610821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.